Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Понятие рабочего процесса технической системы. Определение технической системы

Описание технических систем

Критерии развития технических объектов

Понятие технических объектов, технических систем и технологий

Творческая изобретательская деятельность человека чаще всего проявляется при разработке новых, более совершенных по конструкции и наиболее эффективных в эксплуатации технических объектов (ТО) и технологий их изготовления .

В официальной патентной литературе термины «технический объект» и «технология» получили, соответственно, наименования «устройство» и «способ».

Слово «объект» обозначает то, с чем взаимодействует человек (субъект) в своей познавательной или предметно-практической деятельности (компьютер, кофемолка, пила, автомобиль и.др.).

Слово «технический» означает, что речь идет не о каких-либо условных или абстрактных объектах, а именно «технических объектах ».

Технические объекты применяются для:1) воздействия на предметы труда (металл, древесина, нефть и т.д.) при создании материальных ценностей; 2) получения, передачи и преобразования энергии;3) исследования законов развития природы и общества; 4) сбора, хранения, обработки и передачи информации; 5) управления технологическими процессами; 6) создания материалов с заранее заданными свойствами; 7) передвижения и связи; 8) бытового и культурного обслуживания; 9) обеспечения обороноспособности страны и т.д.

Технический объект – широкое понятие. Это космический корабль и утюг, компьютер и ботинок, телевизионная башня и садовая лопата. Существуют элементарные ТО , состоящие всего из одного материального (конструктивного) элемента. Например, литая чугунная гантель, столовая ложка, металлическая шайба.

Наряду с понятием «технический объект» широко используется термин «техническая система».

Техническая система (ТС) – это определенная совокупность упорядоченно связанных между собой элементов, предназначенных для удовлетворения определенных потребностей, для выполнения определенных полезных функций.

Любая техническая система состоит их ряда конструктивных элементов (звеньев, блоков, узлов, агрегатов), называемых подсистемами, число которых может быть равно N. В то же время у большинства технических систем существуют и надсистемы – технические объекты более высокого конструктивного уровня, в которые они включены как функциональные элементы. В надсистему могут входить от двух до М технических систем (рис. 2.1.).

Технические объекты (системы) выполняют определенные функции (операции) по преобразованию вещества (объектов живой и неживой природы), энергии или информационных сигналов. Под технологией понимается способ, метод или программа преобразования вещества, энергии или информационных сигналов из заданного начального состояния в заданное конечное состояние с помощью соответствующих технических систем.


Любой ТО находится в определенном взаимодействии с окружающей средой. Взаимодействие ТО с окружающей живой и неживой средой может происходить по разным каналам связи, которые целесообразно разделить на две группы (рис. 2.2.).

Первая группа включает потоки вещества, энергии и информационных сигналов, передаваемых от окружающей среды к ТО, вторая группа – потоки, передаваемые от ТО в окружающую среду.

А т – функционально обусловленные (или управляющие) входные воздействия, входные потоки в реализуемые физические операции;

А в – вынужденные (или возмущающие) входные воздействия: температура, влажность, пыль и т.д.;

С т – функционально обусловленные (или регулируемые, контролируемые) выходные воздействия, выходные потоки реализованных в объекте физический операций;

С в – вынужденные (возмущающие) выходные воздействия в виде электромагнитных полей, загрязнения воды, атмосферы и т.д.

Критерии развития ТО являются важнейшими критериями (показателями) качества и поэтому используются при оценке качества ТО.

Особенно велика роль критериев развития при разработке новых изделий, когда конструкторы и изобретатели в своих исканиях стремятся превзойти уровень лучших мировых достижений, или когда предприятия хотят приобрести готовые изделия такого уровня. Для решения таких задач критерии развития играют роль компаса, указывающего направление прогрессивного развития изделий и технологий.

Любой ТО имеет не один, а несколько критериев развития, поэтому при разработке ТО каждого нового поколения стремятся максимально улучшить одни критерии и при этом не ухудшить другие.

Всю совокупность критериев развития ТО обычно разделяют на четыре класса (рис. 3.3.):

· функциональные, характеризующие показатели реализации функции объекта;

· технологические , отражающие возможность и сложность изготовления ТО;

· экономические , определяющие экономическую целесообразность реализации функции с помощью рассматриваемого ТО;

· антропологические , связанные с оценкой воздействия на человека отрицательных и положительных факторов со стороны созданного им ТО.

Единичный критерий не может полностью характеризовать ни эффективность разрабатываемого ТО, ни эффективность процесса его создания. Исходя из этого, приступая к созданию нового ТО, разработчики формируют набор критериев (показателей качества) и к техническому объекту и к процессу его создания. Процедуру отбора критериев и признания степени важности называют стратегией выбора.

Вместе с тем, набор критериев регламентируется ГОСТом. Показатели качества разделены на 10 групп:

1. назначения;

2. надежности;

3. экономического использования материалов и энергии;

4. эргономические и эстетические показатели;

5. показатели технологичности;

6. показатели стандартизации;

7. показатели унификации;

8. показатели безопасности;

9. патентно-правовые показатели;

10. экономические показатели.

Каждый технический объект (система) может быть представлен описаниями, имеющими иерархическую соподчиненность.

Потребность (функция ).

Под потребностью понимается желание человека получить определенный результат в процессе преобразования, транспортировки или хранении вещества, энергии, информации. Описания потребностей Р должны содержать в себе информацию:

D – о действии, которое приводит к удовлетворению интересующей потребности;

G – об объекте или предмете технологической обработки, на которое направлено действие D;

Н – о наличии условий или ограничений, при которых реализуется это действие.

Техническая система - это материальный объект искусственного происхождения, который состоит из элементов (составных частей, различающихся свойствами, проявляющимися при взаимодействии), объединённых связями (линиями передачи единиц или потоков чего-либо) и вступающих в определённые отношения (условия и способы реализации свойств элементов) между собой и с внешней средой, чтобы осуществить процесс (последовательность действий для изменения или поддержания состояния) и выполнить функцию технической системы (ТС) - цель, назначение, роль. ТС имеет структуру (строение, устройство, взаиморасположение элементов и связей, задающее устойчивость и воспроизводимость функции ТС). Каждая составная часть ТС имеет индивидуальное функциональное назначение (цели использования) в системе.

Энциклопедичный YouTube

    1 / 3

    Техническая система инфобизнеса от Евгения Попова Часть 1

    Передача 2. Неразрушающий контроль и техническая диагностика

    Монтажникам санитарно-технических систем и оборудования посвящается

    Субтитры

Функциональный состав и свойства объектов технической системы

В каждой ТС существует функциональная часть - объект управления (ОУ). Функции ОУ в ТС заключаются в восприятии управляющих воздействий (УВ) и в изменении в соответствии с ними своего состояния . ОУ в ТС не выполняет функций принятия решений, то есть не формирует и не выбирает альтернативы своего поведения, а только реагирует на внешние (управляющие и возмущающие) воздействия, изменяя свои состояния предопределенным его конструкцией образом.

В объекте управления всегда могут быть выделены две функциональные части - сенсорная и исполнительная .

Сенсорная часть образована совокупностью технических устройств, непосредственной причиной изменения состояний каждого из которых является соответствующие ему и предназначенные для этого управляющие воздействия. Примеры сенсорных устройств: выключатели, переключатели, задвижки , заслонки , датчики и другие подобные им по функциональному назначению устройства управления техническими системами.

Исполнительная часть образована совокупностью материальных объектов, все или отдельные комбинации состояний которых рассматриваются в качестве целевых состояний технической системы, в которых она способна самостоятельно выполнять предусмотренные её конструкцией потребительские функции. Непосредственной причиной изменения состояний исполнительной части ТС (ОУ в ТС) являются изменения состояний её сенсорной части.

Классификационные признаки объектов

  • представляют собой целостную совокупность конечного множества совзаимодействующих материальных объектов
  • имеют условия штатной эксплуатации, предусмотренные их конструкцией
  • содержат последовательно взаимодействующие друг с другом сенсорные и исполнительные функциональные части
  • имеют модели управляемого предопределенного причинно-следственного поведения в пространстве достижимых равновесных устойчивых состояний
  • имеют целевые состояния, соответствующие состояниям исполнительной части объекта управления в ТС
  • имеют способность, находясь в целевых состояниях, самостоятельно выполнять потребительские функции

Техническая система - это целостная совокупность конечного числа взаимосвязанных материальных объектов, имеющая последовательно взаимодействующие сенсорную и исполнительную функциональные части, модель их предопределенного поведения в пространстве равновесных устойчивых состояний и способность, при нахождении хотя бы в одном из них (целевом состоянии), самостоятельно выполнять в штатных условиях предусмотренные её конструкцией потребительские функции.

Техническая подсистема - это часть системы, имеющая все признаки объектов таксона «технические системы». Техническая подсистема может быть частью некоторой системы, которая сама может не относиться к классу ТС.

Устройство - это целостная совокупность конечного числа взаимосвязанных материальных объектов, имеющая модель предопределенного поведения и равновесные устойчивые состояния в штатных условиях эксплуатации.

В определении понятия «устройство» учитывается, что оно как составная часть ТС также должно иметь равновесные устойчивые состояния, определяющие свойства целевых состояний системы в целом.

Деталь - неразделимый на элементы материальный и функциональный объект технической системы или устройства.

В этом определении учитывается, в частности, «функциональное» свойство детали, которое заключается в её способности выполнять отведенную ей конструктором роль в ТС, то есть быть исправной.

Техническая система – это искусственно созданные объекты, предназначенные для удовлетворения определенной потребности, которым присущи возможность выполнения не менее одной функции, многоэлементность, иерархичность строения, множественность связей между элементами, многократность изменения состояний и многообразие потребительских качеств. К техническим системам относятся отдельные машины, аппараты, приборы, сооружения, ручные орудия, их элементы в виде узлов, блоков, агрегатов и др. сборочных единиц, а также сложные комплексы взаимосвязанных машин, аппаратов, сооружений и т.п.

Техническая система относятся к самому большому классу технических объектов. Техническая система существует в трех модусах (проявлениях): 1) как изделие производства; 2) как устройство, потенциально готовое совершить полезный эффект; 3) как процесс взаимодействия с компонентами окружающей среды (источником внешней энергии, потребителем и т.д.), в результате которого и происходит эксплуатация (функционирование) технической системы и образуется полезный эффект. 1-й модус раскрывается в предметной декомпозиции технической системы, в выявлении всех ее неделимых, условно монолитных деталей и сборочных единиц; 2-й - в функциональной декомпозиции, в выявлении одно- и многофункциональных элементов; 3-е, рабочее состояние технической системы раскрывается в генерируемых процессах (сменах состояний) и рабочих циклах, включающих взаимосвязанные процессы. Ни один из функциональных элементов не может быть воспроизведен непосредственно, а существует благодаря деталям и сборочным единицам, которые по отношению к ним выступают в качестве предметов-носителей. Устройства, непосредственно участвующие в создании полезного эффекта технической системы, ответственны за степень совершенства рабочего процесса и ресурс работы. Для обеспечения ресурса часто используются спец. элементы, демпфирующие колебания, устройства охлаждения, разъемы, причем последние, повышая технологичность конструкции технической системы, требуют устройства крепления деталей, состояние которого во время эксплуатации технической системы сказывается на ее надежности.

При всем разнообразии технической системы смысловая нагрузка любого функционального элемента состоит в том, чтобы изменять или сохранять движение связанного с элементом объекта; изменять пространственные характеристики и время существования технической системы, а также изменять энергию как меру той или иной формы движения. Строение технической системы и параметры среды, с которой она взаимодействует, предопределяют все параметры и показатели функционирования технической системы, проявления ее состояния, характеристики и качества.

Функционирование технической системы раскрывается через средства (процессы) достижения полезного эффекта и управления этими процессами. Создание полезного эффекта обусловлено составом и порядком действия основных функциональных элементов, от которых зависит рабочий цикл технической системы; на фактический результат влияют затраты энергии от внешнего источника и свойства др. компонентов среды. Под управлением происходящими в технической системе процессами подразумевается преднамеренное изменение или сохранение характера и интенсивности с компонентами среды и поддержание параметров внешнего состояния всех элементов технической системы в пределах, обеспечивающих безопасность людей и сохранение материальных ценностей. При полном раскрытии характеристик технической системы речь идет как о связях между входными и выходными параметрами функционирования (напр., связь тяги и расхода топлива авиационного двигателя и условий полета самолета), так и о показателях, позволяющих отличить анализируемую техническую систему от других, о признаках принадлежности технической системы к определенному типу как категории, объединяющей технической системой одного назначения с одинаковым принципом действия, и о признаках отличий в строении. Об уровне технической системы свидетельствуют максимально достижимые значения ее потребительских качеств (выходных параметров).


Область применения технических систем очень широка и включает в себя все отрасли экономики. В табл. 3.1 приведены примеры технических систем, используемых в важнейших отраслях экономики.

Классификация технических систем по различным определяющим признакам вносит достаточно стройный порядок в их обширное множество и позволяет лучше ориентироваться. Как следствие этого появляется возможность изучения передового опыта, что позволяет подчас обнаружить между довольно далекими техническими системами интересные, доселе скрытые отношения.

Технические системы могут быть классифицированы по следующим признакам:

по функции (рабочему действию) , например, технические системы для фиксации, придания формы, вращения, подъема;

Таблица 3.1

Примеры технических систем в различных отраслях экономики

Отрасль экономики Техническая система
назначение машина
Горное дело Добыча Транспортировка Обогащение Врубовая машина Транспортер Сортировальная машина
Энергетика Выработка пара Выработка электричества Паровой котел, барабан Паровая турбина, гидротурбина, генератор
Металлургия Производство чугуна Производство стали Производство проката Доменная печь Мартеновская печь Прокатный стан
Химическая промышленность Очистка и переработка нефти Производство красителей Производство пластмасс Резервуар Реактор Колонна
Фармацевтическая промышленность Производство медикаментов Пресс, каландр
Металлообрабатывающая промышленность Обработка давлением Обработка резанием Термообработка Литье Сборка Пресс, молот Станок Печь Формовочная машина Конвейер
Строительная промышленность Строительство оснований и фундаментов Строительство надземных сооружений Земляные работы Гидротехническое строительство Производство стройматериалов Экскаватор Подъемный кран Скрепер Бетономешалка Формовочный пресс
Транспорт Железнодорожное сообщение Судоходство Воздушное сообщение Локомотив, вагон Пароход Самолет
Текстильная промышленность Производство текстиля Изготовление готового платья Прядильная машина, ткацкий станок Швейная машина
Пищевая промышленность Производство муки Производство пищевых жиров Переработка молока Мукомольная мельница Пресс Центрифуга
Медицина Диагностика Терапия Рентгеновский аппарат Протез
Типографское и конторское дело Печатание Конторские нужды Печатная машина Пишущая машинка, счетная машина
Сельское и лесное хозяйство Обработка земли Уборка урожая Заготовка древесины Трактор с плугом Комбайн Электропила
Распределение, торговля Самообслуживание Упаковка Контрольная машина Упаковочная машина

по типу преобразования , например, технические системы для преобразования материи, энергии, информации, биологических объектов;



по принципу осуществления рабочего действия , например, технические системы, основанные на механическом, гидравлическом, пневматическом, электронном, химическом, оптическом, акустическом принципе;

по характеру функционирования , например, мощностные, скоростные, импульсные технические системы, системы для различных условий окружающей среды (например, для тропического климата) и т. п.;

по уровню сложности , например, конструктивные элементы, узлы, машины, предприятия в целом;

по способу изготовления , например, технические системы, изготовленные путем литья, ковки, штамповки, обточки;

по степени конструктивной сложности ;

по форме , например технические системы (конструктивные элементы) в виде тела вращения, плоские, сложной формы;

по материалу , например, технические системы из стали, меди, пластмассы;

по степени оригинальности конструкции , например, заимствованные, доработанные, модифицированные, оригинальные технические системы;

по типу производства , например, технические системы, изготовленные в условиях единичного, серийного или массового производства;

по названию фирмы-изготовителя , например, технические системы "Сименс", "Фиат", "ВАЗ", "BOSCH";

по месту в техническом процессе , по эксплуатационным свойствам, внешнему виду, технико-экономическим характеристикам и т. п.

Ясно, что одна и та же техническая система может принадлежать одновременно к нескольким классам. Ниже более подробно будут рассмотрены те принципы классификации технических систем, которые, с точки зрения проектировщика и конструктора, являются особо важными.

Классификация технических систем по функции. Названия технических систем часто выбираются в соответствии с их функцией. Составление номенклатур изделий применительно к требованиям сбыта, планирования, контроля, сравнительной оценки и т. п. также осуществляется, как правило, в соответствии с функцией технических систем. Изделия обозначаются по функции также в тех случаях, когда требуется помочь потенциальному потребителю найти то или иное техническое средство для выполнения определенной функции: этому служат торговые и промышленные каталоги, обзорные таблицы и т.п.

На любом предприятии используется множество элементов и узлов, выполняющих в различных отраслях техники одну определенную функцию, таких, как крепежные детали, редукторы, соединительные муфты, измерительные, регулирующие и сигнальные приборы, гидравлические и пневматические приборы и их части, специализированные электротехнические устройства и т.п. Узлы и детали машин также можно рассматривать как технические системы, поэтому их классификацию целесообразно проводить тоже по функции, так как конструктор, производственник и эксплуатационник применяют различные детали в соответствии с их функциональной пригодностью. Такая классификация называется конструктивно-функциональной , наряду с классификацией по способу изготовления она является основной при заимствовании существующих технических систем, унификации, типизации и стандартизации элементов и групп . Классификация по этим принципам позволяет экономить рабочее время конструктора.

Классификация технических систем по принципу действия. Для конструктора важно, чтобы технические системы, выполняющие одинаковые функции, были далее сгруппированы по еще какому-либо важному признаку. Таким признаком можно считать принцип действия технической системы . Так, например, технические системы "двигатели" можно подразделить по принципу действия: двигатели электрические, внутреннего сгорания, внешнего сгорания. Двигатели внутреннего сгорания в свою очередь можно подразделить по используемому физическому принципу смесеобразования на карбюраторные и дизельные. Такого рода признаки технических систем относятся преимущественно к группе функционально обусловленных свойств, весьма характерных для технических систем и имеющих большое значение для методической работы конструктора.

Классификация технических систем по уровню сложности. Деление технических систем на классы по их структуре - обычное дело в работе конструктора. Основным признаком, по которому образуются классы, должна служить функция системы. Однако, учитывая потребности производства, например, по соображениям монтажа, порой возникает необходимость в проведении иной классификации. Табл. 3.2 дает общее представление о классификации технических систем по уровню сложности.

Таблица 3.2

Классификация технических систем по уровню сложности

Уровень сложности Техническая система Характеристика Примеры
I Конструктивный элемент Деталь машины Элементарная система, изготовленная без монтажных операций Болт, подшипниковая втулка, пружина, шайба
II Подгруппа Группа Узел Механизм Простая система, выполняющая несложную функцию Коробка передач, гидравлический привод, шпиндельная бабка токарного станка
III Машина Прибор Аппарат Система, состоящая из групп и элементов и выполняющая определенную функцию Токарный станок, автомобиль, электромотор
IV Установка Предприятие Промышленный комплекс Сложная система, состоящая из машин, групп и элементов, выполняющая ряд функций и характеризующая упорядоченные совокупности функций и места Технологическая линия, цех термической обработки, нефтехимический комплекс

На более высоких уровнях сложности можно различать еще и промежуточные уровни. Тем не менее, следует помнить, что речь идет об относительной иерархии. Одна и та же система более низкого уровня, например электромотор или коробка передач, в одной системе рассматривается как подгруппа, а в другой системе – как группа или машина (подсистема).

На практике общепризнанно, что нижние уровни технических систем находят более универсальное применение, например, такие элементы как "винт", "болт", "гайка" применяются в машиностроении повсеместно, "электромотор" довольно часто, а "технологическая линия" используется лишь в определенных, специальных процессах.

Классификация технических систем по уровню сложности имеет немаловажное значение для конструктора, поскольку уровень сложности технической системы

а) находится в определенном соотношении со степенью сложности решения поставленной перед конструктором задачи;

б) предполагает установление известных границ для специализации конструктора (например, инженер-проектировщик имеет дело с предприятием, инженер-конструктор - с машиной, конструктор деталей - с элементами машины);

в) помогает конструктору ориентироваться в процессе работы, ибо, если он решает задачу на каком-то определенном уровне сложности, ему важно знать лишь то, как его задача согласована с более высоким уровнем (в отношении более низкого уровня конструктор принимает чаще всего только принципиальные решения).

На основании сборочного чертежа отдельные уровни сложности можно рассматривать так же, как совокупности процессов изготовления и монтажа. Образование соответствующих совокупностей, прежде всего из деталей, подгрупп и групп, является необходимым условием создания модульных конструкций, а также целесообразной организации производственного процесса.

Классификация технических систем по способу изготовления. Для изготовления определенных групп технических систем требуется однотипное технологическое оборудование. Например, на одном и том же оборудовании можно изготовить паровые котлы и химические емкости, на другом - токарные, фрезерные, сверлильные и другие станки. Детали машин можно также свести в технологические группы по принципу сходства технологических операций изготовления, где главным отличительным признаком будет служить форма. Такая классификация позволяет рационально провести технологическую подготовку производства и повысить эффективность производственного процесса, поскольку дает возможность объединить рабочие места для изготовления одинаковых по способу изготовления деталей. Это в свою очередь облегчает осуществление самых различных мер рационализации, например специализацию рабочих цехов, предприятий. Значение такой классификации особенно велико при разработке и осуществлении планов подготовки производства, методов управления и планирования. Она является составной частью, так называемой, групповой технологии обработки.

Классификация технических систем по степени конструктивной сложности. Технические системы можно также классифицировать с точки зрения конструктивной сложности. В качестве примера в табл. 3.3 технические системы третьего уровня сложности (см. табл. 3.2) разделены на 6 категорий по степени их конструктивной сложности. В зависимости от уровня сложности рассматриваемой технической системы для решения связанных с ней проблем выбирается соответствующий специалист или группа специалистов. При планировании конструкторской работы степень конструктивной сложности разрабатываемой технической системы служит критерием для установки определенных временных рамок инженерной работы.

Таблица 3.3

Примеры классификации технических систем III уровня сложности по

степени конструктивной сложности

Детали машин также можно классифицировать в зависимости от степени сложности их конструкции. Соответствующий пример классификации по другому принципу дан в табл. 3.4. Критериями опенки степени конструктивной сложности служат:

а) степень оригинальности конструкции;

б) сложность выполняемых функций, форм, структуры в целом;

в) сложность расчетов;

г) размеры, необходимые точность их выполнения и качество обработки;

д) особые требования, предъявляемые к таким характеристикам, как масса, технологичность конструкции, затраты, требования к внешнему виду и т. п.

Таблица 3.4

Примеры классификации деталей машин по степени конструктивной сложности

Степень конструктивной сложности Характеристика Примеры
Очень простые детали с небольшим количеством контрольных размеров невысокой точности Опорная шайба, простой рычаг, небольшой вал, болт, крепежная скоба
Простые детали с большим количеством контрольных размеров Рычаг, шкив, простое штампованное изделие
Более сложные детали Шестерня, шлицевой вал
Более сложные детали с большим количеством контрольных размеров Довольно сложные отливки, небольшие поковки
Очень сложные детали Сложные отливки кожухов и поковки средних размеров
Очень сложные и большие детали Каркасы, кожухи машин, сварные или литые станины
Особо сложные детали больших размеров и необычной формы с точным выдерживанием большого количества контрольных размеров Лопасти турбины, большие поковки, прецизионные отливки сложной формы

Классификация элементов технических систем по степени стандартизации и происхождению. Такая классификация очень важна для оценки экономичности конструкции. По степени стандартизации технической системы можно судить о целесообразности и возможных масштабах ее производства в рамках данного предприятия. С экономической точки зрения количество оригинальных конструктивных элементов в технической системе должно быть как можно меньшим, поскольку они характеризуют требования, предъявляемые к конструкторской и технологической подготовке производства. Существует правило, которое гласит, что чем меньше количество оригинальных конструктивных элементов в создаваемой системе, тем выше вероятность для организации ее серийного или даже массового производства . Часто, впрочем, в силу каких-либо иных причин эти соображения не являются решающими.

Классификация технических систем по степени оригинальности конструкции. При разработке новой машины конструктор всегда старается использовать в конструкции, оправдавшие себя на практике узлы и детали. По степени оригинальности конструкции технические системы можно разделить на следующие категории.

Заимствованные технические системы . Для выполнения необходимой функции уже существуют какая-либо техническая система или даже несколько систем, из которых могут быть выбраны наиболее подходящие. К ним относятся в первую очередь унифицированные элементы и группы (болты, клинья, вентили, пружины), а также неунифицированные элементы и группы, которые могут быть заимствованы из других конструкций.

Доработанные технические системы . В наличии имеется какая-либо техническая система, выполняющая необходимую функцию, но не отвечающая некоторым требованиям. Возникает потребность, например, изменить габариты, мощность, число оборотов, скорость, установочные размеры, материал или технологию. Структуры системы и важнейшие свойства элементов в этом случае остаются без изменения. Таким образом, доработка технической системы проводится исключительно в целях приспособления ее к особым условиям и требованиям новой задачи, а новые материалы используются только в целях повышения качества, удешевления или модернизации.

Модифицированные технические системы . Существующие системы не отвечают требованиям, предъявляемым к некоторым свойствам групп и элементов конструкции. В модифицированной конструкции обычно не изменяются лишь функция, некоторые параметры и по возможности принцип действия. В элементах могут быть изменены форма, размеры, материал или технология, в сложных технических системах изменяются органоструктура и конструктивная схема, т.е. некоторые элементы и группы, их соединение и размещение в пространстве. Обычно модификация осуществляется путем переделки конструкции.

Новые технические системы . Для выполнения желаемой функции отсутствует техническая система или же существующая имеет недостатки принципиального характера. Необходима система с новым принципом действия и другими техническими свойствами.

Классификация технических систем по типу производства. Тип производства, который определяется количеством изготавливаемых единиц продукции, придает каждому изделию ряд характерных технических и экономических свойств.

Технические системы единичного производства . В этом случае конструкторские и подготовительные работы необходимо приспособить к нуждам поштучного производства, в условиях которого стоимость каждой изготовленной технической системы увеличивается. Не исключено, что в условиях единичного производства необходимая функция технической системы вообще не будет достигнута, поскольку при изготовлении крупных технических систем приходится работать без прототипа. Вот почему эта категория систем предъявляет высокие требования к конструктору.

Технические системы серийного или массового производства . Эти системы в целом лучше проработаны с точки зрения производства. Из-за большого объема партий изделий доля конструкторских затрат по отношению к общим расходам невелика. Однако поскольку контролю подвергается, как правило, лишь небольшая часть изделий, то не исключены различные погрешности и дефекты. Только при осуществлении непрерывного контроля за всеми операциями или выпускаемыми деталями и изделиями в целом можно добиться стабильного качества при серийном и массовом производствах. Специалисту упомянутые категории систем интересны и в том плане, что они формируют основу для определения возможного качества изделий. Прослеживается четкая тенденция ко все большему использованию унифицированных, серийно выпускаемых технических систем, особенно для выполнения различных функций низких уровней, например элементов соединения, измерения, регулирования, привода, распределения. С другой стороны, возрастает количество технических систем специального назначения. Современное производство не может обойтись без целого ряда вспомогательных средств, специализированных машин, автоматов и поточных линий, специального оборудования, т. е. без всего того, что обеспечивает выпуск дешевой унифицированной продукции в массовом количестве. Обе категории изделий предъявляют высокие требования к объему и качеству конструкторской работы.

Классификацию технических систем можно проводить с различных точек зрения; при этом из всего множества технических систем образуются подмножества, связанные общими отличительными признаками. Полученные категории могут служить различным целям, например систематизации, наглядности, оценке, анализу и т. п.

Техническая система (ТС) - это структура, образованная взаимосвязанными элементами, предназначенная для выполнения определенных полезных функций. Функция - это способность ТС проявлять свое свойство (качество, полезность) при определенных условиях и преобразовывать предмет труда (изделие) в требуемую форму или величину Появление цели - это результат осознания потребности. Потребность (постановка задачи) - это то, что нужно иметь (сделать), а функция - реализация потребности в ТС. Возникновение потребностей, осознание цели и формулирование функции - это процессы, происходящие внутри человека. Но реально действующая функция - это воздействие на предмет труда (изделие) или служение человеку. То есть, не хватает промежуточного звена - рабочего органа. Это и есть носитель функции в чистом виде. Рабочий орган (РО) - единственная функционально полезная человеку часть технической системы. Все остальные части вспомогательные. ТС и возникали на первых этапах как рабочие органы (взамен органов тела и в дополнение им). И только потом, для увеличения полезной функции. к рабочему органу "пристраивались" другие части, подсистемы, вспомогательные системы.

Рисунок 1. Полная принципиальная схема работающей ТС.
Пунктиром обведен состав минимальной работоспособной ТС, обеспечивающий ее жизнеспособность.

Соединение элементов в единое целое нужно для получения (образования, синтеза) полезной функции, т.е. для достижения поставленной цели. Составление структуры - это программирование системы, задание поведения ТС с целью получения в результате полезной функции. Требуемая функция и выбранный физический принцип ее осуществления определяют структуру. Структура - это совокупность элементов и связей между ними, которые определяются физическим принципом осуществления требуемой полезной функции. Структура, как правило, остается неизменной в процессе функционирования, то есть при изменении состояния, поведения, совершения операций и любых других действий. Следует различать два вида системных прибавок, получаемых при соединении элементов в структуру:
- системный эффект - непропорционально большое усиление (уменьшение) свойств, имеющихся у элементов,
- системное качество - появление нового свойства, которого не было ни у одного из элементов до включения их в систему.

Каждая ТС может выполнять несколько функций, из которых только одна рабочая, ради которой она и существует, остальные - вспомогательные, сопутствующие, облегчающие выполнение главной. Определение главной полезной функции (ГПФ) иногда вызывает затруднение. Это объясняется множественностью требований, предъявляемых к данной системе со стороны выше и ниже лежащих систем, а также соседних, внешних и прочих систем. Отсюда кажущаяся бесконечность определений ГПФ (принципиальная неохватность всех свойств и связей). С учетом иерархичности функций, ГПФ данной системы - это выполнение требований первой вышестоящей системы. Все остальные требования, по мере удаления от иерархического уровня, от которого они исходят, оказывают все меньшее влияние на данную систему. Эти над и подсистемные требования могут быть выполнены и другими веществами и системами, не обязательно данной системой. То есть, ГПФ элемента определяется той системой, в которую он включается.

Чтобы точнее определить системный эффект (системное качество) данной ТС можно воспользоваться простым приемом: надо разделить систему на составные элементы и посмотреть, какое качество (какой эффект) исчезло. Например, отдельно ни одна из самолетных частей летать не может, как не может выполнить свою функцию и "усеченная" система самолет без крыла, оперения или управления. Это, кстати, убедительный способ доказательства, что все объекты в мире - системы: разделите уголь, сахар, иголку, - на каком этапе деления они перестают быть самими собой, теряют главные признаки? Все они отличаются друг от друга лишь продолжительностью процесса деления - иголка перестает быть иголкой при делении на две части, уголь и сахар - при делении до атома. По-видимому, так называемый диалектический закон перехода количественных изменений в качественные отражает лишь содержательную сторону более общего закона - закона образования системного эффекта (системного качества).

Элемент - относительно целая часть системы, обладающая некоторыми свойствами неисчезающими при отделении от системы. Однако в системе свойства элемента не равны свойствам отдельно взятого элемента. Сумма свойств элемента в системе может быть больше или меньше суммы его свойств вне системы. Иначе говоря, часть свойств элемента, включаемого в систему, гасится или к элементу добавляются новые свойства. В подавляющем большинстве случаев часть свойств элемента нейтрализуется в системе, в зависимости от величины этой части говорят о степени потери индивидуальности элемента включенного в систему. Элемент - минимальная единица системы, способная к выполнению некоторой элементарной функции. Все технические системы начинались с одного элемента, предназначенного для выполнения одной элементарной функции. Затем, по мере развития ТС идет дифференциация элемента, то есть разделение элемента на зоны с разными свойствами. Из моноструктуры элемента (камень, палка) начинают выделяться другие элементы. Например, при превращении каменного резца в нож выделились рабочая зона и зона ручки, а затем усиление специфических свойств каждой зоны потребовало применение разных материалов (составные инструменты). Из рабочего органа выделилась и развилась трансмиссия.

Связь - это отношение между элементами системы, это реальный физический (вещественный или полевой) канал для передачи энергии, вещества или информационных сигналов; причем сигналов нематериальных не бывает, это всегда энергия или вещество. Главное условие работы связи - "разность потенциалов" между элементами, то есть градиент поля или вещества (отклонение от термодинамического равновесия - принцип Онзагера). При градиенте возникает движущая сила, вызывающая поток энергии или вещества. Основные характеристики связи: физическая реализация и мощность. Физическая реализация - это вид вещества или поля, используемого в связи. Мощность - интенсивность потока вещества или энергии. Мощность связи должна быть больше мощности внесистемных связей, выше уровня шума внешней среды.

Иерархический принцип организации структуры возможен только в многоуровневых системах (это большой класс современных технических систем) и заключается в упорядочении взаимодействий между уровнями в порядке от высшего к нижнему. Каждый уровень выступает как управляющий по отношению ко всем нижележащим и как управляемый, подчиненный, по отношению к вышележащему. Каждый уровень специализируется также на выполнении определенной функции (ГПФ уровня). Абсолютно жестких иерархий не бывает, часть систем нижних уровней обладает меньшей или большей автономией по отношению к вышележащим уровням. В пределах уровня отношения элементов взаимно дополняют друг друга, им присущи черты самоорганизации (это закладывается при формировании структуры). Возникновение и развитие иерархических структур не случайно, так как это единственный путь увеличения эффективности, надежности и устойчивости в системах средней и высокой сложности. В простых системах иерархия не требуется, так как взаимодействие осуществляется по непосредственным связям между элементами. В сложных системах непосредственные взаимодействия между всеми элементами невозможны (требуется слишком много связей), поэтому непосредственные контакты сохраняются лишь между элементами одного уровня, а связи между уровнями резко сокращаются.

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...