Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Как сделать концентратор солнечной энергии. Солнечный тепловой концентратор

Источники энергии, такие как электричество, уголь и газ, постоянно дорожают.

Людям приходится чаще задумываться об использовании более экологичных систем отопления.

Поэтому было разработано техническое новшество в сфере альтернативных источников тепла . Для этого стали применять солнечные коллекторы.

Солнечный коллектор для отопления

У поверхности этого прибора низкая отражающая способность, за счет чего поглощается тепло. Для обогрева помещения этот механизм использует свет солнца и его инфракрасное излучение .

Чтобы нагреть воду и отопить жилище хватит мощности простого солнечного коллектора. Это зависит от конструкции агрегата. Человек может самостоятельно сделать монтаж оборудования. Для этого не нужно использовать дорогие инструменты и материалы.

Справка. Коэффициент полезного действия профессиональных устройств составляет 80—85% . Самодельные обходятся намного дешевле, но их КПД не более 60—65%.

Конструкция

Строение оборудования простое. Прибор представляет собой прямоугольную пластину, состоящую из нескольких слоев:

  • покрышка из антибликового закаленного стекла с обрамлением;
  • поглотитель;
  • нижняя изоляция;
  • боковая изоляция;
  • трубопровод;
  • стеклянная завеса;
  • алюминиевый атмосферостойкий корпус;
  • соединительные штуцеры.

Система включает в себя 1—2 коллектора , накопительную емкость и аванкамеру. Конструкция организована замкнуто, поэтому солнечные лучи попадают только в нее и превращаются в тепло.

Принцип работы

Основа функционирования установки — термосифонная . Теплоноситель внутри оборудования циркулирует самостоятельно, что поможет отказаться от использования насоса.

Нагретая вода стремится вверх, оттесняя тем самым холодную и переправляя ее к тепловому источнику.

Коллектор представляет собой трубчатый радиатор, который вмонтирован в древесный короб , одна плоскость которого сделана из стекла. Трубы при изготовлении агрегата используются стальные. Отведение и подведение выполняются трубами, применяемыми в устройстве водопровода.

Конструкция работает так:

  1. Коллектор преобразует солнечную энергию в тепло.
  2. Жидкость поступает в бак-накопитель через подающую магистраль.
  3. Циркуляция теплоносителя происходит самостоятельно либо с помощью электронасоса . Жидкость в установке должна отвечать нескольким требованиям: не испарятся при высоких температурах, быть нетоксичной, морозоустойчивой. Обычно берут воду дистиллированную, смешанную с гликолем в пропорции 6:4.

Солнечный концентратор

Прибор для аккумулирования энергии лучей солнца, имеет функцию теплоносителя. Служит для фокусирования энергии на приемнике излучателя внутри изделия.

Существуют следующие виды:

  • параболоцилиндрические концентраторы;
  • концентраторы на плоских линзах (линзы Френеля );
  • на сферических линзах;
  • параболические концентраторы;
  • солнечные башни.

Концентраторы отражают излучение с большой плоскости на маленькую , что помогает достичь высоких температур. Жидкость вбирает тепло и перемещает к объекту обогрева.

Важно! Цена приборов — недешевая, а также они требуют постоянного квалифицированного обслуживания . Используется такое оборудование в гибридных системах, чаще всего в промышленных масштабах и позволяет увеличить производительность коллектора.

Виды коллекторов, работающих от энергии солнца

В настоящее время существует несколько разновидностей солнечных отопительных коллекторов.

Плоский, его монтаж своими руками

Этот прибор состоит из панели, в которую вмонтирована пластина абсорбера. Этот вид устройств самый распространенный. Себестоимость агрегатов демократичная и зависит от вида покрытия, фирмы производителя, мощности и площади обогрева. Цены на оборудование такого типа — от 12 тыс. рублей.

Фото 1. Пять солнечных коллекторов плоского типа, установленных на крыше частного дома. Приборы находятся под наклоном.

Сфера применения

Подобные коллекторы чаще устанавливаются в частных домах для отопления комнат и снабжения помещения горячей водой. Приборы справляются с тем, чтобы подогреть вод для летнего душа на даче. Эксплуатировать их уместно в теплую и солнечную погоду.

Внимание! Поверхность коллекторов нельзя затемнять другими постройками, деревьями и домами. Это негативно отражается на производительности. Монтируется оборудование на крыше либо фасаде здания, а также на любой подходящей поверхности.

Вам также будет интересно:

Конструкция плоского коллектора

Состав прибора:

  • защитное стекло;
  • медные трубки;
  • теплоизоляция;
  • поглощающая поверхность с высокой степенью абсорбции;
  • алюминиевая рама.

Коллектор, у которого присутствует трубчатый змеевик, является классическим вариантом. Как альтернативу в самодельных конструкциях применяют: полипропиленовый материал, алюминиевые банки из-под напитков, резиновые садовые шланги.

Дно и грани системы обязательно нужно теплоизолировать. Если абсорбер соприкасается с корпусом, то возможны потери тепла. Внешняя часть устройства защищена закаленным стеклом с особыми свойствами. В качестве теплоносителя берётся антифриз.

Принцип действия

Жидкость нагревается и поступает в накопительную емкость, из которой в охлажденном виде перемещается в коллектор. Конструкция представлена в двух вариантах : одноконтурная и двухконтурная. В первом случае жидкость сразу идет в бак, во втором — проходит по тонкой трубке через воду в емкости, прогревая объем помещения. По мере движения она охлаждается и перемещается обратно в коллектор.

Фото 2. Схема и принцип работы солнечного коллектора плоского типа. Стрелками указаны части прибора.

Плюсы и минусы

Агрегаты подобного типа отличаются следующими достоинствами:

  • высокой производительностью;
  • низкой себестоимостью;
  • длительной эксплуатацией;
  • надежностью;
  • возможностью самодельного монтажа и обслуживания.

Плоские коллекторы подходят для работы в южных областях с теплым климатом. Их минусом является высокая парусность из-за большой поверхности, поэтому сильный ветер может сорвать конструкцию. Производительность падает в холодную зимнюю погоду. Устанавливать агрегат в идеале следует на южной стороне участка или дома.

Вакуумный

Прибор состоит из отдельных трубок, объединенных вверху и составляющих единую панель. По сути, каждая из трубок является самостоятельным коллектором. Это эффективный современный вид, пригодный к использованию даже в холода. Вакуумные устройства более сложные по отношению к плоским, поэтому стоят дороже.

Фото 3. Солнечный коллектор вакуумного типа. Прибор состоит из множества трубок, закрепленных в одной конструкции.

Сфера применения

Применяются для горячего водоснабжения и обогрева больших посещений . Чаще используются на дачах и в частных домовладениях. Монтируются на фасадах зданий, скатных или плоских крышах, специальных опорных конструкциях. Функционируют в холодном климате и при коротком световом дне, не снижая при этом эффективности. Из-за высокой действенности применяются также на сельскохозяйственных угодьях, промышленных предприятиях. Этот тип распространен в государствах Европы.

Конструкция

В состав устройства входит:

  • тепловой накопитель (бак с водой);
  • контур для циркуляции теплообменника;
  • сам коллектор;
  • датчики;
  • приемник.

Конструкция агрегата представляет собой ряд трубчатых профилей, установленных параллельно. Приёмник и вакуумные трубки сделаны из меди. Блок стеклянных трубок отделен от внешнего контура, благодаря чему деятельность коллектора не прекращается при выходе из строя 1—2 трубок. Изоляция из полиуретана применяется в качестве дополнительной защиты.

Справка. Отличительной чертой коллектора является состав сплава, из которого изготовлены трубы. Это покрытая алюминием и защищенная полиуретаном медь.

Принцип действия

Работа конструкции основана на нулевой теплопроводности вакуума . Промеж трубок образуется безвоздушное пространство, которое надежно сохраняет тепло, образуемое от лучей солнца.

Вакуумный коллектор работает так:

  • энергия солнца принимается трубой внутри вакуумной колбы;
  • нагретая жидкость испаряется и поднимается в область конденсации трубы;
  • теплоноситель стекает вниз от зоны конденсации;
  • цикл повторяется заново.

Благодаря такой работе намного выше уровень теплоотдачи , а теплопотери низкие. Энергию удается сохранить за счет вакуумной прослойки, которая эффективно улавливает тепло.

Фото 4. Схема устройства вакуумного солнечного коллектора. Составные части прибора указаны стрелками.

Плюсы и минусы

Преимущества устройств этого типа:

  • долговечность;
  • устойчивость в эксплуатации;
  • доступный ремонт, возможно заменить только один элемент, вышедший из строя, а не всю конструкцию;
  • низкая парусность, способность противостоять порывам ветра;
  • максимальное поглощение солнечной энергии.

Оборудование дорогое, окупить которое получится только через несколько лет после использования. Цена комплектующих также высока, при их замене может потребоваться помощь профессионала. Система не способна самоочищаться ото льда, снега, инея.

Типы вакуумных коллекторов

Изделия бывают двух видов: с косвенной и прямой тепловой подачей. Функционирование конструкций с косвенной подачей осуществляется от давления в трубах.

В устройствах с прямой тепловой подачей емкость-теплоноситель и стеклянные вакуумные приспособления монтируются к каркасу под определенным углом, через соединительное кольцо из резины.

Оборудование подключается к линиям водопровода через клапан запора , а контролирует уровень воды в емкости фиксирующий клапан.

Вам также будет интересно:

Воздушный

Вода намного более теплоемка, чем воздух. Однако ее использование сопряжено с рядом бытовых проблем при эксплуатации (коррозия труб, контроль давления, смена агрегатного состояния).Воздушные коллекторы не так прихотливы, имеют простую конструкцию. Приборы нельзя считать полноценной заменой остальным видам, но снизить коммунальные расходы они в состоянии.

Сфера применения

Оборудование такого типа используется в воздушном обогреве домов, осушительных системах и для рекуперации (обработки) воздуха . Применяется для просушки сельскохозяйственной продукции.

Конструкция

Состоит из:

  • адсорбера, поглощающей тепло панели внутри корпуса;
  • внешней изоляции из закаленного стекла;
  • тепловой изоляции между стенкой корпуса и поглотителем;
  • герметичного корпуса.

Фото 5. Воздушный солнечный коллектор для обогрева дома. Прибор закреплен вертикально на стене здания.

Прибор располагается близко к объекту обогрева из-за больших теплопотерь в воздушных магистралях.

Принцип действия

В отличие от водных коллекторов, воздушные не накапливают тепло, а сразу пускают его в утепление . Солнечный свет попадает на внешнюю часть устройства и нагревает ее, воздух начинает циркулировать в конструкции и отапливает помещение.

Спроектировать воздушный коллектор можно самостоятельно, используя в изготовлении подручные материалы: пивные банки из меди или алюминия, панели ДСП, алюминиевого и металлического листа.

Фото 6. Схема устройства воздушного солнечного коллектора. На чертеже обозначены основные части прибора.

Плюсы и минусы

Достоинства:

Из недостатков: ограниченная сфера применения (только обогрев), низкая эффективность. Ночью оборудование будет работать на охлаждение воздуха, если его не закрыть.

Выбор комплекта солнечных коллекторов для отопительной системы

Выбор устройства зависит от целей, на которые будет направлена работа конструкция. Гелиосистема применяется для поддержки воздуха, обеспечения горячего водоснабжения, подогрева воды для бассейна.

Мощность

Чтобы рассчитать возможную мощность гелиосистемы, следует знать 2 параметра: солнечной инсоляции в определенном регионе в нужное время года и эффективную площадь поглощения коллектора. Эти цифры необходимо перемножить.

Можно ли использовать коллектор в зимний период

Вакуумные устройства справляются с работой в холодном климате. Плоские показывают низкую производительность в морозы и лучше подойдёт для южных областей.

Меньше других для функционирования в холоде подходит воздушная конструкция так, как ночью она не способна нагревать воздух.

Неудобства доставляют сильные осадки , ведь зимой оборудование часто засыпает снегом и требуется регулярная чистка. Морозный воздух отбирает накопленное тепло, а сам коллектор может быть поврежден градом.

Учёт сферы применения

В промышленности использование гелиосистем более распространено . Энергию солнца применяют в работе электростанций, парогенераторов, опреснителей воды. Для нагрева воды, обогрева дачи или бани в бытовых условиях чаще устанавливают вакуумные коллекторы, реже — плоские. Воздушные системы помогают снизить стоимость отопления, благодаря обогреву воздуха в дневное время.

Основной задачей солнечного коллектора является преобразование полученной от солнца энергии в электричество. Принцип работы и конструкция оборудования несложные, поэтому технически сделать его легко. Как правило, полученную энергию используют для обогрева зданий. Изготовление солнечного коллектора для отопления дома своими руками необходимо начинать с подбора всех комплектующих.

    Показать всё

    Конструкция и принцип работы

    Отопление дома с помощью преобразования солнечной энергии в электрическую используется, как правило, в качестве дополнительного источника тепла, а не основного. С другой стороны, если установить конструкцию большой мощности, а все приборы в доме переоборудовать под электричество, тогда можно обойтись только солнечным коллектором.

    Но стоит помнить, что отопление с помощью солнечных коллекторов без дополнительных источников тепла возможно только в южных регионах. При этом панелей должно быть достаточно много. Их необходимо располагать таким образом, чтобы на них не падала тень (например, от деревьев). Размещать панели следует лицевой стороной в направлении, максимально освещаемом солнцем на протяжении всего дня.

    Концентраторы солнечной энергии

    Хоть сегодня существует много разновидностей таких устройств, принцип работы у всех одинаковый. Любая схема забирает солнечную энергию и передаёт её потребителю, представляя собой контур с последовательным расположением приборов. Комплектующими, производящими электроэнергию, являются солнечные батареи или коллекторы.

    Коллектор состоит из трубок, которые последовательно соединены со входным и выходным отверстием. Также они могут располагаться в виде змеевика. Внутри трубок находится техническая вода или смесь воды и антифриза. Иногда они наполняются просто воздушным потоком. Циркуляция осуществляется благодаря физическим явлениям, таким как испарение, изменение агрегатного состояния, давление и плотность.

    Абсорберы выполняют функцию сбора энергии солнца. Они имеют вид сплошной металлической пластины чёрного цвета либо конструкции из множества пластин, соединённых между собой трубками.

    Для изготовления крышки корпуса используют материалы с высокой пропускной способностью света. Зачастую это либо оргстекло, либо закалённые виды обычного стекла. Иногда используются полимерные материалы, но изготовление коллекторов из пластика не рекомендуется. Связано это с его большим расширением от нагревания солнцем. В результате может произойти разгерметизация корпуса.

    Если система будет эксплуатироваться только осенью и весной, то в качестве теплоносителя можно использовать воду. Но в зимнее время её необходимо заменить на смесь антифриза и воды . В классических конструкциях роль теплоносителя играет воздух, который движется по каналам. Их можно сделать из обычного профлиста.

    Опыт эксплуатации солнечной батареи изготовленной самостоятельно (солнечная батарея часть 3).

    Если коллектор необходимо устанавливать для обогрева небольшого здания, которое не подключено к автономной системе отопления частного дома или централизованным сетям, то подойдёт простая система с одним контуром и нагревательным элементом в её начале. Схема простая, но целесообразность её установки оспаривается, так как работать она будет только солнечным летом. Однако для её функционирования не потребуются циркуляционные насосы и дополнительные нагреватели.

    При двух контурах всё гораздо сложнее, но количество дней, когда станет активно вырабатываться электроэнергия, увеличивается в несколько раз. При этом коллектор будет обрабатывать только один контур. Большая часть нагрузки возлагается на одно устройство, которое работает на электроэнергии или другом виде топлива.

    Хоть производительность устройства напрямую зависит от количества солнечных дней в году, а цена на него завышена, оно всё равно пользуется большой популярностью среди населения. Не менее распространённым является производство солнечных теплообменников своими руками.

    Классификация по температурным показателям

    Гелиосистемы классифицируются по различным критериям. Но в приборах, которые можно изготовить самостоятельно, следует обратить внимание на вид теплоносителя. Такие системы можно разделить на два типа:

    • использование различных жидкостей;
    • воздушные конструкции.

    Первые применяются чаще всего. Они более производительные и позволяют напрямую подключить коллектор к отопительной системе. Также распространена классификация по температуре, в пределах которой может работать устройство:

    Солнечная батарея своими руками Part11

    Последний вид гелиосистем работает благодаря очень сложному принципу передачи солнечной энергии. Оборудованию требуется много места. Если разместить его на загородной даче, тогда оно займет преобладающую часть участка. Для производства энергии понадобится специальное оборудование, поэтому сделать такую солнечную систему самостоятельно будет практически невозможно.


    Изготовление своими руками

    Процесс изготовления солнечного обогревателя своими руками довольно увлекательный, а готовая конструкция принесёт много пользы хозяину. Благодаря такому устройству можно решить проблему обогрева помещений, нагрева воды и других важных хозяйственных задач.

    Материалы для самостоятельного производства

    В качестве примера можно привести процесс создания отопительного устройства, которое будет поставлять нагретую воду в систему. Самым дешёвым вариантом производства солнечного коллектора является использование в качестве основных материалов деревянного бруска и фанеры, а также плит ДСП. Как альтернативу можно использовать алюминиевые профили и металлические листы, но они обойдутся дороже.

    Все материалы должны быть влагоустойчивыми, то есть отвечать требованиям использования на открытом воздухе. Качественно изготовленный и установленный солнечный коллектор может служить от 20 до 30 лет. В связи с этим материалы должны иметь необходимые характеристики эксплуатации для применения на протяжении всего срока. Если корпус создан из дерева или плит ДСП, тогда для продления срока службы его пропитывают водно-полимерными эмульсиями и лаком.

    Обзор: Самодельная солнечная панель (батарея).

    Необходимые материалы для изготовления можно либо купить на рынке в свободном доступе, либо сделать конструкцию из подручных материалов, которые найдутся в любом хозяйстве. Поэтому основное, на что нужно обращать внимание, - это цена материалов и комплектующих.

    Обустройство теплоизоляции

    Чтобы уменьшить потери тепла, на дно короба укладывается изоляционный материал. Для него можно использовать пенопласт, минеральную вату и т. п. Современная промышленность предоставляет большой выбор различных утеплителей. Например, хорошим вариантом станет использование фольги. Она не только предотвратит потерю тепла, но и будет отражать солнечные лучи, а значит, увеличит нагрев теплоносителя.

    В случае использования пенопласта или полистирола для утепления можно вырезать для трубок канавки и монтировать их таким образом. Как правило, абсорбер фиксируется к днищу корпуса и укладывается по изоляционному материалу.

    Теплоприемник коллектора

    Теплоприемником солнечного коллектора выступает абсорбирующий элемент. Он представляет собой систему, состоящую из трубок, по которым движется теплоноситель, и других деталей, производящихся обычно из листов меди.

    Лучшим материалом для трубчатой части является медь. Но домашние умельцы изобрели более дешёвый вариант - полипропиленовые шланги , которые скручиваются в спиральную форму. Для подсоединения к системе на входе и выходе применяются фитинги.

    Подручные материалы и средства разрешается использовать различные, то есть практически любые, которые есть в хозяйстве. Тепловой коллектор своими руками можно изготовить из старого холодильника, полипропиленовых и полиэтиленовых труб, панельных радиаторов из стали и других подручных средств. Важным фактором при выборе теплообменника является теплопроводность материала, из которого он изготовлен.


    Идеальным вариантом для создания самодельного водяного коллектора является медь. Она имеет самую высокую теплопроводность. Но использование медных трубок вместо полипропиленовых не означает, что устройство будет выдавать намного больше тёплой воды. На равных условиях медные трубки будут на 15-25% эффективнее, чем установка полипропиленовых аналогов. Поэтому применение пластика тоже является целесообразным, к тому же он намного дешевле меди.

    При использовании меди или полипропилена необходимо делать все соединения (резьбовые и сварные) герметичными. Возможное расположение труб - параллельное или в виде змеевика. Верх основной конструкции с трубками закрывается стеклом. При форме в виде змеевика уменьшается количество соединений и, соответственно, возможное образование утечек, а также обеспечивается равномерное движение теплоносителя по трубкам.

    Для покрытия короба можно использовать не только стекло. В этих целях применяют полупрозрачные, матовые или рифлёные материалы. Использовать можно акриловые современные аналоги или монолитные поликарбонаты.

    При изготовлении классического варианта можно использовать закалённое стекло или оргстекло, поликарбонатные материалы и т. п. Хорошей альтернативой станет применение полиэтилена.

    Важно учитывать, что использование аналогов (рифлёных и матовых поверхностей) способствует уменьшению пропускной способности света. В заводских моделях применяют для этого специальное солярное стекло. Оно имеет немного железа в своём составе, что обеспечивает низкую теплопотерю.

    Накопительный бак установки

    Чтобы создать накопительный бак, можно использовать любую ёмкость объёмом от 20 до 40 литров. Также применяется схема с несколькими резервуарами, которые соединяются между собой в одну систему. Бак желательно утеплить, в противном случае подогретая вода быстро остынет.

    Если разобраться, то аккумуляции в этой системе нет, а нагретый теплоноситель необходимо использовать сразу же. Поэтому накопительная ёмкость используется для:

    • поддержания давления в системе;
    • замены аванкамеры;
    • распределения нагретой воды.

    Разумеется, что солнечный коллектор, сделанный своими руками в домашних условиях, не обеспечит качество и эффективность, характерные для моделей заводского производства. Используя только подручные материалы, о высоком коэффициенте полезного действия не стоит и говорить. В промышленных образцах такие показатели в несколько раз выше. Однако и финансовые затраты станут здесь намного меньше, так как используются подручные средства. Сделанная своими руками солнечная установка значительно повысит уровень комфорта в загородном доме, а также уменьшит расходы на другие энергоресурсы.

Солнечную энергию можно собирать и использовать разными способами. Один из самых простых и эффективных - зеркальный рефлектор и концентратор. Его не сложно изготовить своими руками.

Рефлектор отражает солнечные лучи и концентрирует их на ёмкости с водой. Та нагревается и вскипает, выдавая струю пара. Конструкция устройства довольно проста, главное - чтобы зеркала автоматически поворачивались на нужный угол и следили за Солнцем.

Полученный пар направляем, например, в духовой шкаф для приготовления пищи, по трубам на обогрева дома, в турбину для генерации электроэнергии, в двигатель, холодильник и т.д. На самом деле, если посмотреть на какой-нибудь производственный процесс, то почти любую его часть можно перевести на пар.

Самодельный парогенератор Solar-OSE на линейных зеркалах с управлением от платы Arduino на французской конференции мейкеров POC21 , посвящённой самодельным экологическим проектам.

Недавно авторы выложили в открытый доступ под лицензией Creative Commons инструкцию по сборке устройства. Такой компактный прибор на 1 кВт отлично подходит для малого бизнеса, особенно в сельской местности. Если объединить несколько модулей, то мощность повышается в несколько раз.

По оценке мейкеров, стоимость всех деталей парогенератора составит примерно $2000, но есть разные варианты экономии.

Примерное время сборки: 150 часов. Одна неделя, три человека.

В инструкции приводится полный список и размеры всех материалов, а также необходимые для работы инструменты.

Стартаповская компания GoSol намерена сделать солнечную энергию доступной для каждого в глобальном масштабе. Для этого ею была создана инициатива по разработке и распространению инструкций по сборке солнечных концентраторов из местных материалов, которые могли стать эффективными источниками тепла для приготовления пищи, стирки, нагрева воды и отопления.

«Миссия GoSol.orgсостоит в том, чтобы искоренить энергетическую нищету и минимизировать последствия глобального потепления путем распространения нашей DIY-технологии (DIYот англ. Do It Yourself - рус. «сделай это сам») и разрушения всяких барьеров на пути к свободном доступу к солнечной энергии. С вашей помощью мы хотим привлечь сообщества, предпринимателей и умельцев к использованию самого мощного в мире источника энергии. Все материалы и инструменты, необходимые для реализации этих технологий уже произведены и в изобилии присутствуют во всех уголках мира» - говорится на сайте GoSol.

Энтузиасты GoSol запустили компанию, с помощью которой намереваются собрать 68 000 долларов для воплощения в жизнь своей цели. На данный момент инициатива привлекла около 27 000 долларов и совсем недавно GoSol выпустила свою первую инструкцию по созданию солнечного концентратора.

Читайте также: Солнечный концентратор Ripasso - самый эффективный способ преобразования солнечной энергии?

Бесплатное пошаговое руководство содержит всю необходимую информацию для создания своими руками солнечного концентратора мощностью 0,5 кВт. Отражающая поверхность устройства будет иметь площадь около 1 квадратного метра, а стоимость его производства обойдется от $79 до $145 в зависимости от региона проживания.

Sol1, такое название получила солнечная установка от GoSol, займет приблизительно 1,5 кубических метра пространства. Работы по его изготовлению займут около недели. Материалами для его конструкции послужат железные уголки, пластмассовые коробки, стальные прутья, а основной рабочий элемент – отражающую полусферу – предлагается выполнить из кусков обычного зеркала ванных комнат.

Солнечный концентратор может быть использован для выпечки, жарки, нагрева воды или консервации продуктов питания, посредством обезвоживания. Устройство также может служить демонстрационным примером эффективной работы солнечной энергии и поможет многим предпринимателям развивающихся стран начать собственное дело. В дополнение к содействию снижению вредных выбросов в атмосферу, солнечные концентраторы GoSol помогут сократить вырубку лесов, заменив сжигаемую древесину чистой энергией солнца.

Инструкция GoSol может быть использована не только для создания и практического применения, но и для продажи солнечных концентраторов, которые помогут значительно снизить порог доступа к солнечной энергии, которая, главным образом, сегодня генерируется посредством фотогальванических солнечных панелей. Их стоимость остается на крайне высоком уровне в регионах, где добыть энергию другими способами зачастую просто не возможно.

Бесплатная инструкция солнечного концентратора доступна на сайте GoSol, а чтобы получить ее потребуется оставить свой email адрес, на который будет отправляться обновленная информация. Если же вы желаете, чтобы «солнечная» инициатива продвигалась стремительней и в более крупных масштабах, то можно поддержать компанию финансово – стартап еще принимает денежные взносы, награда за которые будет зависеть от суммы пожертвования.

Читайте также: Украинский солнечный концентратор «Diversity» - инструкция в свободном доступе

Видео: компания GoSol.org Free The Sun Campaign for Builders

ecotechnica.com.ua

Самодельный солнечный концентратор из зеркальный пленки

Огромное количество свободной энергии солнца, воды и ветра и многого другого из того, что может дать природа, люди используют давно. Для кого-то это хобби, а кто-то не может выжить без приспособлений, которые могут извлекать энергию «из воздуха». Например в африканских странах солнечные батареи давно стали спасительным спутником для людей, в засушливых деревнях внедряются системы орошения на солнечных батареях, устанавливаются «солнечные» насосы на колодцы и др.

Солнечные печи в этом китайском магазине.

В европейских странах солнце не светит столь ярко, но лето довольно жаркое, и очень жаль, когда дармовая энергия природы пропадает зря. Существуют удачные разработки печей на солнечной энергии, но в них используются цельные или сборные параболические зеркала. Это во-первых дорого, во-вторых утяжеляет конструкцию и поэтому не всегда удобно в эксплуатации, например, когда требуется малый вес готового концентратора.Интересную модель самодельного параболического солнечного концентратора создал талантливый изобретатель.Для ее изготовления не нужны зеркала, поэтому она очень легкая и не будет тяжелым грузом в походе.

Для создания самодельного солнечного концентратора на основе пленки требуется совсем немного вещей. Все они продаются на любом вещевом рынке.1. Самоклеющаяся зеркальная пленка. Она имеет ровную блестящую поверхность и поэтому является прекрасным материалом для зеркальной части солнечной печи.2. Лист ДСП и такой же по размеру лист оргалита.3. Тонкий шланг и герметик.

Как сделать солнечную печь?

Сначала из древесно-стружечной плиты нужного вам размера электролобзиком вырезаются два кольца, которые надо приклеить друг к другу. На фото и видео фигурирует одно кольцо, но автор указывает, что позднее он добавил второе кольцо. По его словам, можно было бы ограничиться одним, но пришлось увеличить пространство для формирования достаточной вогнутости параболического зеркала. В противном случае фокус луча будет располагаться слишком далеко. Под размер кольца вырезается круг из оргалита для формирования задней стенки солнечного концентратора.Кольцо следует приклеить к оргалиту. Обязательно хорошо все промажьте герметиком. Конструкция должна быть полностью герметичной.Сбоку аккуратно, чтобы были ровные края, проделайте небольшое отверстие, в которое плотно вставьте тонкий шланг. Для герметичности соединение шланга и кольца также можно обработать герметиком.Поверх кольца натяните зеркальную пленку.Откачайте воздух из корпуса установки и таким образом сформируйте сферическое зеркало. Шланг загните и зажмите прищепкой.Сделайте удобную подставку для готового концентратора. Энергии данной установки достаточно, чтобы расплавить алюминиевую банку.

Внимание! Параболические солнечные отражатели могут быть опасными и могут при неосторожном обращении привести к ожогам и повреждениям глаз!Посмотрите процесс изготовления солнечной печки на видео.

Использован материал с сайта забацай.ру. Как сделать солнечную батарею - тут.

izobreteniya.net

Как сделать солнечный концентратор своими руками (например, параболический)

Проблема использования солнечной энергии с древних времен занимала лучшие умы человечества. Было понятно, что Солнце – это мощнейший источник даровой энергии, но как эту энергию использовать, не понимал никто. Если верить античным писателям Плутарху и Полибию, то первым человеком, практически использовавшим солнечную энергию, был Архимед, который с помощью изобретенных им неких оптических устройств сумел собрать солнечные лучи в мощный пучок и сжечь римский флот.

В сущности, устройство, изобретенное великим греком, представляло собой первый концентратор солнечного излучения, который собрал солнечные лучи в один энергетический пучок. И в фокусе этого концентратора температура могла достигать 300°С - 400°С, что вполне достаточно для того, чтобы воспламенить деревянные суда римского флота. Можно только догадываться, какое именно устройство изобрел Архимед, хотя, по современным представлениям, вариантов у него было всего два.

Уже само наименование устройства – солнечный концентратор – говорит само за себя. Этот прибор принимает солнечные лучи и собирает их в единый энергетический пучок. Самый простой концентратор всем знаком из детства. Это обычная двояковыпуклая линза, которой можно было выжигать различные фигурки, надписи, даже целые картинки, когда солнечные лучи собирались такой линзой в маленькую точку на деревянной доске, листе бумаги.

Эта линза относится к так называемым рефракторным концентраторам. Кроме выпуклых линз к этому классу концентраторов относятся также линзы Френеля, призмы. Длиннофокусные концентраторы, построенные на основе линейных линз Френеля, несмотря на свою дешевизну, практически используются очень мало, так как обладают большими размерами. Их применение оправдано там, где габариты концентратора не являются критичными.

Рефракторный солнечный концентратор

Этого недостатка лишен призменный концентратор солнечного излучения. Более того, такое устройство способно концентрировать также и часть диффузного излучения, что значительно повышает мощность светового пучка. Трехгранная призма, на основе которой построен такой концентратор, является и приемником излучения и источником энергетического пучка. При этом передняя грань призмы принимает излучение, задняя грань – отражает, а из боковой грани уже выходит излучение. В основу работы такого устройства заложен принцип полного внутреннего отражения лучей до того, как они попадут на боковую грань призмы.

В отличие от рефракторных, рефлекторные концентраторы работают по принципу сбора в энергетический пучок отраженного солнечного света. По своей конструкции они подразделяются на плоские, параболические и параболоцилиндрические концентраторы. Если говорить об эффективности каждого из этих типов, то наивысшую степень концентрации – до 10000 – дают параболические концентраторы. Но для построения систем солнечного теплоснабжения используются в основном плоские или параболоцилиндрические системы.

Параболические (рефлекторные) солнечные концентраторы

Практическое применение солнечных концентраторов

Собственно, основная задача любого солнечного концентратора – собрать излучение солнца в единый энергетический пучок. А уж воспользоваться этой энергией можно различными путями. Можно даровой энергией нагревать воду, причем, количество нагретой воды будет определяться размерами и конструкцией концентратора. Небольшие параболические устройства можно использовать в качестве солнечной печи для приготовления пищи.

Параболический концентратор в качестве солнечной печи

Можно использовать их для дополнительного освещения солнечных батарей, чтобы повысить выходную мощность. А можно использовать в качестве внешнего источника тепла для двигателей Стирлинга. Параболический концентратор обеспечивает в фокусе температуру порядка 300°С – 400°С. Если в фокусе такого сравнительно небольшого зеркала поместить, например, подставку для чайника, сковороды, то получится солнечная печь, на которой очень быстро можно приготовить пищу, вскипятить воду. Помещенный в фокусе нагреватель с теплоносителем позволит достаточно быстро нагревать даже проточную воду, которую затем можно использовать в хозяйственных целях, например, для душа, мытья посуды.

Простейшая схем нагрева воды солнечным концентратором

Если в фокусе параболического зеркала поместить подходящий по мощности двигатель Стирлинга, то можно получить небольшую тепловую электростанцию. Например, фирма Qnergy разработала и пустила в серию двигатели Стирлинга QB-3500, которые предназначены для работы с солнечными концентраторами. В сущности, правильнее было бы их назвать генераторами электрического тока на базе двигателей Стирлинга. Этот агрегат вырабатывает электрический ток мощностью 3500 ватт. На выходе инвертора – стандартное напряжение 220 вольт 50 герц. Этого вполне достаточно, чтобы обеспечить электричеством дом для семьи из 4 человек, дачу.

Кстати, используя принцип работы двигателей Стирлинга, многие умельцы своими руками делают устройства, в которых используется вращательное или возвратно-поступательное движение. Например, водяные насосы для дачи.

Основной недостаток параболического концентратора заключается в том, что он должен быть постоянно ориентирован на солнце. В промышленных гелиевых установках применяются специальные системы слежения, которые поворачивают зеркала или рефракторы вслед за движением солнца, обеспечивая тем самым прием и концентрацию максимального количества солнечной энергии. Для индивидуального использования вряд ли будет целесообразным применять подобные следящие устройства, так как их стоимость может значительно превышать стоимость простого рефлектора на обычной треноге.

Как сделать самому солнечный концентратор

Самый простой способ для изготовления самодельного солнечного концентратора – это использовать старую тарелку от спутниковой антенны. Вначале нужно определиться, для каких целей будет использоваться этот концентратор, а затем, исходя из этого, выбрать место установки и подготовить соответствующим образом основание и крепления. Тщательно вымыть антенну, высушить, на приемную сторону тарелки наклеить зеркальную пленку.

Для того, чтобы пленка легла ровно, без морщин и складок, ее следует разрезать на полоски шириной не более 3 – 5 сантиметров. Если предполагается использовать концентратор в качестве солнечной печи, то рекомендуется в центре тарелки вырезать отверстие диаметром примерно в 5 – 7 сантиметров. Через это отверстие будет пропущен кронштейн с подставкой для посуды (конфоркой). Это обеспечит неподвижность емкости с приготовляемой едой при повороте рефлектора на солнце.

Если тарелка небольшого диаметра, то рекомендуется еще и полоски разрезать на кусочки длиной примерно по 10 см. Наклеивать каждый кусочек отдельно, тщательно подгоняя стыки. Когда отражатель будет готов, его следует установить на опору. После этого нужно будет определить точку фокуса, так как точка оптического фокуса у тарелки спутниковой антенны не всегда совпадает с позицией приемной головки.

Самодельный солнечный концентратор – печь

Чтобы определить точку фокуса, необходимо вооружиться темными очками, деревянной дощечкой и толстыми перчатками. Затем нужно направить зеркало прямо на солнце, поймать на дощечку солнечный зайчик и, приближая или удаляя дощечку относительно зеркала, найти точку, где этот зайчик будет иметь минимальные размеры – небольшую точку. Перчатки нужны для того, чтобы уберечь руки от ожога, если они случайно попадут в зону действия луча. Ну, а когда точка фокуса будет найдена, ее останется только зафиксировать и монтировать необходимое оборудование.

Вариантов самостоятельного изготовления солнечных концентратором существует множество. Точно так же самому из подручных материалов можно смастерить и двигатель Стирлинга. А уж использовать этот двигатель можно для самых различных целей. На сколько хватит фантазии, желания и терпения.

solarb.ru

Эта самоделка о том, как построить солнечный водонагреватель. Правильнее назвать его параболический солнечный концентратор. Главное преимущество его в том, что зеркало отражает 90% солнечной энергии, а его параболическая форма концентрирует эту энергию в одной точке. Эта установка будет эффективно работать в большинстве районов России, вплоть до 65 градуса с.ш.

Для сборки коллектора нам понадобится несколько основных вещей: сама антенна, система слежения за солнцем и теплообменник-коллектор.

Параболическая антенна.

Можно использовать любую антенну- железную, пластиковую или из стекловолокна. Антенна должна быть панельного типа, а не сеточная. Здесь важна площадь антенны и форма. Надо помнить, мощность нагрева = площади поверхности антенны. И что мощность, собираемая антенной диаметром 1,5 м, будет в 4 раза меньше мощности собираемой антенной с площадью зеркала 3 м.

Так же понадобится поворотный механизм для антенны в сборе. Его можно заказать на Ebay или на Aliexpress.

Понадобится рулон алюминиевой фольги или лавсановой зеркальной пленки, применяемой для теплиц. Клей, которым пленка будет приклеиваться к параболе.

Медная трубка диаметром 6 мм. Фитинги, для подключения горячей воды к баку, к бассейну, ну или где вы будете применять эту конструкцию. Поворотный механизм слежения автор приобрел на EBAY за 30$.

Шаг 1 Переделка антенны для фокусировки солнечного излучения вместо радиоволн.

Надо всего лишь прикрепить лавсановую зеркальную пленку или алюминиевую фольгу к зеркалу антенны.

Такую пленку можно заказать на Aliexpress, если вдруг в магазинах не найдете Пленка

Делается это почти также просто, как и звучит. Надо только учесть, что если антенна, к примеру, диаметром 2,5 м, а пленка шириной 1 м, то не надо закрывать антенну пленкой в два прохода, будут образовываться складки и неровности, которые ухудшат фокусировку солнечной энергии. Вырезайте ее небольшими полосами и закрепляйте на антенне с помощью клея. Перед наклейкой пленки убедитесь, что антенна чистая. Если есть места, где краска вздулась- зачистите их наждачной бумагой. Вам надо выровнять все неровности. Обратите внимание, чтобы LNB-конвертор был снят со своего места- иначе он может расплавиться. После наклейки пленки и установки антенны на место не приближайте руки или лицо к месту крепления головки- вы рискуете получить серьезные солнечные ожоги.

Шаг 2 система слежения.

Список деталей: geliotraker.zip (скачиваний: 371) * U1/U2 - LM339 * Q1 - TIP42C * Q2 - TIP41C * Q3 - 2N3906 * Q4 - 2N3904 * R1 - 1meg * R2 - 1k * R3 - 10k * R4 - 10k * R5 - 10k * R6 - 4.7k * R7 - 2.7k * C1 - 10n керамика * M - DC мотор до 1А * LEDs - 5mm 563nm Видео работы гелиотракера по схеме из архива

Сам можно сделать на основе передней ступицы автомобиля ВАЗ.

Кому интересно фото взято отсюда:Поворотный механизм

Шаг 3 Создание теплообменника-коллектора

Для изготовления теплообменника понадобится медная трубка, свернутая в кольцо и помещенная в фокус нашего концентратора. Но сначала нам надо узнать размер фокальной точки тарелки. Для этого надо снять LNB-конвертер с тарелки, оставив стойки крепления конвертера. Теперь надо повернуть тарелку на солнце, предварительно закрепив кусок доски на месте крепления конвертера. Подержите доску немного в этом положении, пока не появиться дым. Это займет по времени примерно 10-15 секунд. После этого отверните антенну от солнца, снимите доску с крепления. Все манипуляции с антенной, ее развороты, проводятся для того, чтобы вы случайно не засунули руку в фокус зеркала- это опасно, можно сильно обжечься. Пусть остынет. Измерьте размер сожженной части древесины- это будет размер вашего теплообменника.

Размер точки фокусировки будет определять, сколько медной трубки вам понадобится. Автору понадобилось 6 метров трубы при размере пятна 13см.Поворотный механизм Я думаю, что возможно, вместо свернутой трубки можно поставить радиатор от автомобильной печки, есть довольно маленькие радиаторы. Радиатор должен быть зачерненный для лучшего поглощения тепла. Если же вы решили использовать трубку, надо постараться согнуть ее без перегибов и изломов. Обычно для этого трубку заполняют песком, закрывают с обеих сторон и сгибают на какой-нибудь оправке подходящего диаметра. Автор залил в трубку воды и положил ее в морозильную камеру, открытыми концами вверх, чтобы вода не вытекла. Лед в трубке создаст давление изнутри, что позволит избежать изломов. Это позволит согнуть трубу с меньшим радиусом изгиба. Ее надо сворачивать по конусу- каждый виток должен быть не много большего диаметра чем предыдущий. Можно спаять витки коллектора между собой для более жесткой конструкции. И не забудьте слить воду после того, как закончите с коллектором, чтобы после установки его на место, вы не обожглись паром или горячей водой

Шаг 4. Собираем все вместе и пробуем.

Установка в сбореТеперь у вас есть зеркальная парабола, модуль слежения за солнцем, помещенный в водонепроницаемый контейнер, или пластиковую емкость, законченный коллектор. Все, что осталось сделать - это установить коллектор на место и опробовать его в работе. Вы можете пойти дальше и усовершенствовать конструкцию, сделав, что-то типа кастрюли с утеплителем и одеть ее на заднюю часть коллектора. Механизм слежения должен отслеживать движение с востока на запад, т.е. поворачиваться в течение дня за солнцем. А сезонные положения светила (вверх\вниз) можно регулировать вручную один раз в неделю. Можно, конечно, добавить механизм слежения и по вертикали- тогда вы получите практически автоматическую работу установки. Если вы планируете использовать воду для подогрева бассейна или в качестве горячей воды в водопроводе- вам понадобиться насос, который будет прокачивать воду через коллектор. В случае если вы будете нагревать емкость с водой, надо принять меры, чтобы избежать закипания воды и взрыва бака. Сделать это можно используя электронный термостат, который, в случае достижения заданной температуры, будет отводить зеркало от солнца с помощью механизма слежения.

От себя добавлю, что используя коллектор зимой надо принять меры, чтобы вода не замерзла в ночное время и в ненастную погоду. Для этого лучше сделать замкнутый цикл- с одной стороны коллектор, а с другой теплообменник. Систему заполнить маслом-его можно нагреть до более высокой температуры, градусов до 300, и на морозе не замерзнет. Источник

ВКонтакте

Чтобы написать комментарий необходимо войти на сайт через соц. сети (или зарегистрироваться): Обычная регистрация

Информация

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

usamodelkina.ru

Самые популярные способы использования солнечной энергии для нагрева воды, это создание плоских или вакуумных солнечных коллекторов. Однако существуют еще способы с довольно высоким показателем КПД, которые помогают использовать энергию солнца для нагрева воды. В этой статье будет рассмотрен один из таких способов, а именно создание солнечного концентратора для горячего водоснабжения.

Для создания системы нагрева воды при помощи солнечного рефлектора автору понадобились следующие материалы:1) параболическая спутниковая антенна2) зеркальная пленка3) медная трубка4) соль5) черная термостойкая краска6) муллитокристаллическое волокно

Рассмотрим основы системы и этапы создания солнечного концентратора.Главным плюсом подобной системы является более высокая производительность: качественные рефлекторы фокусируют высокую плотность солнечных лучей в одной точке, что позволяет превращать воду в пар в считанные секунды.

Для демонстрации наглядной мощности подобных систем рекомендую ознакомиться со следующим видео материалом:

Как показано в видео небольшой солнечный концентратор может прожигать дерево, плавить свинец, то есть температура которая возникает в точке концентрации солнечных лучей довольно высока.

Однако у данной системы есть ряд недостатков, которые необходимо знать перед тем как решить строить подобную систему.

Для того, чтобы рефлектор постоянно был повернут к солнцу, необходимо установка специальных систем слежения, которые будут корректировать рефлектор относительно солнца на протяжении дня. Эти трекеры довольно дорого стоят, и потребляют не мало энергии.

Эффективность концентратора сильно зависит от чистоты отражающей поверхности, поэтому зеркала требуют содержания их в чистоте.

Если данные недостатки вас не пугают, то для постройки концентратора вам понадобиться параболическая спутниковая антенна, причем не особенно важно будь то прямо-фокусная или офсетная модель. Главное это правильная парабола, которая будет концентрировать все пойманные лучи в одну точку. В принципе вы даже сами можете изготовить подобие антенны из листов картона, но эффективность такой системы очень зависит от качества параболы.


После очистки поверхности антенны, автор приступил к оклейке ее зеркальной пленкой. Лучше всего для создания зеркальной поверхности использовать металлизированную пленку с клейким слоем. Обклеивать поверхность такой пленкой довольно просто по принципу самоклеющихся обоев, но так же можно использовать и кусочки зеркал для создания отражающей поверхности на антенне.


Так как сама спутниковая антенна имеет искривленную форму, то пытаться приклеивать цельный кусок пленки не совсем разумно. Поэтому перед оклейкой автор нарезал пленку на тонкие полосы. Благодаря такому подходу удалось достаточно ровно и качестве оклеить всю поверхность антенны.


После того как антенна приобретет зеркальную поверхность необходимо определись точку фокусировки, ею будет место концентрации отраженных солнечных лучей с поверхности антенны. Обычно точка фокусировки у солнечной антенны находится как раз в районе конвертера, но если вы строили параболу самостоятельно то легче всего определить точку фокусировки при помощи экспериментального метода. Необходимо взять кусок фанеры потолще и постепенно отводить его от концентратора, пока солнечное пятно на ней не уменьшиться, как только оно будет минимальным это и будет точкой фокусировки солнечных лучей. Главное помните что в данном месте сконцентрирована высокая температура, поэтому необходимо быть осторожным и надеть средства защиты: кожаные перчатки, сварочную маску или солнечные очки.

Далее нужно сделать теплообменник, который будет сообщать температуру воде. Для этого автор использовал медную трубку. Он затрамбовал в нее соль, и стал наматывать вокруг трубы побольше. Соль внутри медной трубки нужна для того, чтобы во время намотки труба не сплющилась.

Автор отмечает что, для того чтобы использовать максимум энергии от солнца теплообменник не помешает окрасить в черный цвет. Так как теплообменник будет испытывать высокие температуры, то для окраски нужно использовать термостойкую краску.

Так же для увеличения КПД необходимо теплоизолировать теплоприемник для того, чтобы он не остывал от ветра. Ниже показана схема утепленного теплоприемника:

Используйте огнеупорные материалы для изоляции теплоприемника, так как в этом месте будет сконцентрирована высокая температура. Автор данного концентратора использовал для этих целей муллитокристаллическое волокно, которое используют в газовых горнах и муфельных печах. Стекло так же должно быть закаленным, чтобы не деформироваться от температуры.

Теплоприемник был сделан по принципу радиаторов водяного охлаждения для компьютеров. Он изготавливается соответственно размерам пятна точки фокусировки концентратора.


Ниже приведена схема подключения солнечного концентратора:

usamodelkina.ru

Солнечный тепловой концентратор. Солнечная энергетика.

Альтернативная энергетика интересует все большее количество великих умов. Я – не исключение. 🙂

Все началось с простого вопроса: “А можно ли бесколлекторный двигатель превратить в генератор?”-Можно. А зачем?-Сделать ветрогенератор.

Ветряк для выработки электроэнергии – не совсем удобное решение. Переменная сила ветра, зарядные устройства, аккумуляторы, инверторы, много не копеечного оборудования. В упрощенной схеме ветряк на «отлично» справляется с подогревом воды. Ибо нагрузка – тен, а он абсолютно не требователен к параметрам подаваемой на него электроэнергии. Можно избавиться от сложной дорогой электроники. Но расчеты показали значительные затраты на конструкцию, чтобы раскрутить генератор 500 Ватт.Мощность, которую несет в себе ветер, рассчитывается по формуле P=0,6*S*V3, где:P – мощность, ВаттS – площадь, м2V – скорость ветра, м/с

Ветер, дующий на 1 м2 со скоростью 2 м/с «несет» в себе энергию 4,8 Ватт. Если скорость ветра увеличится до 10 м/с, то мощность возрастет до 600 Ватт. У самых лучших ветрогенераторов КПД 40-45%. С учетом этого для генератора мощностью 500 Ватт при ветре, скажем 5 м/с. Потребуется площадь, ометаемая винтом ветрогенератора, около 12 кв.м. Что соответствует винту диаметром почти 4 метра! Много денег – мало толку. Добавить сюда необходимость получения разрешения (ограничение по шумности). Кстати, в некоторых странах установку ветряка нужно согласовывать даже с орнитологами.

Но тут я вспомнили о Солнышке! Оно нам дарит очень много энергии. Об этом я впервые задумался после полета над замерзшим водохранилищем. Когда увидел массу льда толщиной более метра и размерами 15 на 50 километров, я подумал: “Это же сколько льда! Сколько его надо греть, чтобы расплавить!?” И все это сделает Солнце за полтора десятка дней. В справочниках можно найти плотность энергии, которая достигает поверхности земли. Цифра около 1 киловатт на метр квадратный звучит заманчиво. Но это на экваторе в ясный день. Насколько реально утилизировать солнечную энергию для хозяйственных нужд в наших широтах (центральная часть Украины), используя доступные материалы?

Какую реальную мощность, с учетом всех потерь, можно получить с оного квадратного метра?

Для выяснения этого вопроса я сделал первый параболический тепловой концентратор из картона (фокус в чаше параболы). Выкройку из секторов оклеил обычной пищевой фольгой. Понятно, что качество поверхности, да и отражающие способности фольги, очень далеки от идеала.

Но задача стояла именно “колхозными” методами нагреть определенный объем воды, чтобы выяснить какую мощность можно получить с учетом всех потерь. Выкройку можно рассчитать с помощью файла Exel ParabAnt-v2.rar который я нашел на просторах интернета у любителей самостоятельно строить параболические антенны.Зная объем воды, её теплоемкость, начальную и конечную температуру можно рассчитать количество тепла, затраченного на ее нагрев. А, зная время нагрева, можно вычислить мощность. Зная габариты концентратора, можно определить какую практическую мощность можно получить с одного квадратного метра поверхности, на которую падает солнечный свет.

В качестве объема для воды была взята половинка алюминиевой банки, выкрашенная снаружи в черный цвет.

Емкость с водой помещается в фокус параболического солнечного концентратора. Солнечный концентратор ориентируется на Солнце.

Эксперимент №1

проводился около 7 часов утра в конце мая. Утро – далеко не идеальное время, но как раз утром в окно моей “лаборатории” светит Солнце.

При диаметре параболы 0.31 м расчеты показали, что была получена мощность порядка 13,3 Ватт. Т.е. как минимум 177 Ватт/м.кв. Тут следует отметить, что круглая открытая банка далеко не самый лучший вариант для получения хорошего результата. Часть энергии уходит на нагрев самой банки, часть излучается в окружающую среду, в том числе уносится потоками воздуха. В общем, даже в таких далеких от идеала условиях можно хоть что-то получить.

Эксперимент №2

Для второго эксперимента была сделана парабола диаметром 0.6 м. В качестве ее зеркала использовался металлизированный скотч, купленный в строительном магазине. Его отражающие качества незначительно лучше алюминиевой пищевой фольги.

Парабола имела большее фокусное расстояние (фокус за пределами чаши параболы).

Это дало возможность спроецировать лучи на одну поверхность нагревателя и получать в фокусе большую температуру. Парабола без труда прожигает лист бумаги за несколько секунд. Эксперимент проводился около 7 часов утра в начале июня. По результатам эксперимента с тем же объемом воды и той же тарой получил мощность 28 Ватт., что соответствует примерно 102 Ватт/м.кв. Это меньше, чем в первом эксперименте. Это объясняется тем, что солнечные лучи от параболы ложилось на круглую поверхность банки не везде оптимально. Часть лучей проходили мимо, часть падали по касательной. Банка охлаждалась свежим утренним ветерком с одной стороны, в то время как подогревалась с другой. В первом эксперименте за счет того, что фокус был внутри чаши, банка прогревалась со всех сторон.

Эксперимент №3

Поняв, что достойный результат можно получить, сделав правильный теплоприемник, была изготовлена следующая конструкция: банка из жести внутри выкрашена в черный цвет имеет патрубки для подвода и отвода воды. Герметично закрыта прозрачным двойным стеклом. Термоизолирована.

Общая схема такова:

Нагрев происходит следующим образом: лучи от солнечного концентратора (1) через стекло проникают внутрь банки теплоприемника (2), где, попадая на черную поверхность, нагревают ее. Вода, соприкасаясь с поверхностью банки, поглощает тепло. Стекло плохо пропускает инфракрасное (тепловое) излучение, поэтому потери на излучение тепла минимизированы. Поскольку со временем стекло прогревается теплой водой, и начинает излучать тепло, было применено двойное остекление. Идеальный вариант, если между стеклами будет вакуум, но это труднодостижимая задача в домашних условиях. С обратной стороны банка теплоизолирована пенопластом, что также ограничивает излучение тепловой энергии в окружающую среду.

Теплоприемник (2) с помощью трубок (4,5) подключается к бачку (3) (в моем случае пластиковая бутылка). Дно бачка находится на 0.3м выше нагревателя. Такая конструкция обеспечивает конвекцию (самоциркуляцию) воды в системе.

В идеале расширительный бак и трубки должны быть тоже термоизолированы. Эксперимент проводился около 7 часов утра в середине июня. Результаты эксперимента таковы: Мощность 96.8 Ватт, что соответствует примерно 342 Ватт/м.кв.

Т.е. эффективность системы улучшилась более, чем в 3 раза только за счет оптимизации конструкции теплоприемника!

При проведении экспериментов 1,2,3 нацеливание параболы на солнце делалось вручную, «наглазок». Парабола и нагревательные элементы удерживались руками. Т.е. нагреватель не всегда был в фокусе параболы, поскольку руки человека устают и начинают искать более удобное положение, которое не всегда правильное с технической точки зрения.

Как вы могли заметить, с моей стороны были приложены усилия для обеспечения отвратительных условий для проведения эксперимента. Далеко не идеальные условия, а именно:– не идеальная поверхность концентраторов– не идеальные отражающие свойства поверхностей концентраторов– не идеальное ориентирование на солнце– не идеальное положение нагревателя– не идеальное время для эксперимента (утро)

не смогли помешать получить вполне приемлемый результат для установки из подручных материалов.

Эксперимент №4

Далее нагревательный элемент был закреплен неподвижно относительно солнечного концентратора. Это позволило поднять мощность до 118 Ватт, что соответствует примерно 419 Ватт/м.кв. И это в утренние часы! С 7 до 8 утра!

Существуют и другие методы нагрева воды, с помощью Солнечных коллекторов. Коллекторы с вакуумными трубками дороги, а плоские имеют большие температурные потери в холодное время года. Применение солнечных концентраторов может решить эти проблемы, однако требует реализации механизма ориентирования на Солнце. В каждом способе есть как преимущества, так и недостатки.

Один из вопросов, который нужно решить на пути практического применения солнечных концентраторов – это снижение его парусности. Т.е. концентратор должен противостоять ветровым нагрузкам. Для снижения парусности можно использовать концентраторы, собранные из отдельных сегментов. Такие зеркальные концентраторы могут быть довольно плоскими, по сравнению с чашей параболы, а “дырчатая” структура снижает их парусность.

Читайте так же:

См. также ПараболаСолнечная энергетика Солнечный коллектор

Применение солнечных тепловых концентраторов:http://ua.livejournal.com/580303.html https://www.youtube.com/watch?v=1hPmE3Swtvw https://www.youtube.com/watch?v=Rbjey5RGx3c https://www.youtube.com/watch?v=M5OO3vCHRoI https://www.youtube.com/watch?v=CgZ0N6cg-v4

P.S. Солнечная энергия – это ресурс, который еще долгое время будет оставаться бесплатным для всех жителей планеты. И сейчас каждый желающий может свободно получать ее для своих целей. Без примения дорогостоящих технологий, а используя только доступные любому человеку материалы. Что и подтвердили вышеописанные эксперименты.

www.avislab.com

Я знаю: Солнечный концентратор своими руками - SolarNews

Главный из плюсов концентратора – большой КПД нагрева. Мощность отражателя способна в солнечную погоду в одной точке сфокусировать энергию, достаточную для кипячения воды в течении нескольких секунд.

Главными недостатками подобной системы являются необходимость постоянного слежения за солнцем (иначе КПД концентратора падает до нуля) и полировки и удаления грязи с поверхности.

Для изготовления солнечного рефлектора своими руками понадобятся:

1. Ненужная параболическая антенна (также в интернете можно найти инструкции по изготовлению параболических тарелок самостоятельно).

2. Металлизированная зеркальная плёнка с клейким слоем (или кусочки зеркал для особо увлечённых)

3. Теплоприёмник – закрученный в спираль отрез медной трубки – и вводные/выводные трубы.

4. Теплообменный бак (при необходимости).

5. В случае использования самодельного параболоида – крепление для теплоприёмника. В случае использования антенны теплоприёмник можно закрепить в месте крепления конвертера.

Этапы производства солнечного концентратора:

1. Очистить поверхность спутниковой тарелки или самодельного параболоида от грязи и жира. Проделать в центре отверстия для трубок.

2. Наклеить нарезанную на тонкие полоски зеркальную плёнку. Тонкие полоски необходимы для того, чтоб оклеить криволинейную поверхность антенны максимально плотно без стыков, видимых швов и неровностей (не забыть проделать отверстия для трубок).

Наклейка зеркальной плёнки на очищенную поверхность тарелки

Результат оклейки параболоида

3. Закрепить окрашенный чёрной термостойкой краской теплоприёмник в точке фокуса и подвести к нему вводную и выводную трубки.

Закрепление теплоприёмника в фокусе концентратора

4. Залить жидкость в теплообменный бак и установить солнечный концентратор перпендикулярно солнцу.

Важно: Необходимо помнить, что температура в точке концентрации может достигать 300-500 градусов, поэтому при работе с солнечным параболическим концентратором необходимо соблюдать меры безопасности – работать в защитной одежде (кожаные или брезентовые перчатки) и солнцезащитных очках или сварочной маске.

Схема подогрева воды с помощью самодельного солнечного концентратора выглядит примерно так:

Схема самодельного солнечного концентратора с теплообменным баком

По материалам сайта solarsistem.ru

Ну а так выглядит работа самодельного солнечного концентратора на видео (очень похоже на эксперимент с «солнечным кипятильником», не правда ли?):

solar-news.ru Как поменять смеситель в ванной своими руками

Отопление своими руками из полипропиленовых труб

Опубліковано 09.08.2013

Альтернативная энергетика интересует все большее количество великих умов. Я – не исключение. 🙂

Все началось с простого вопроса: “А можно ли бесколлекторный двигатель превратить в генератор?”
-Можно. А зачем?
-Сделать ветрогенератор.

Ветряк для выработки электроэнергии – не совсем удобное решение. Переменная сила ветра, зарядные устройства, аккумуляторы, инверторы, много не копеечного оборудования. В упрощенной схеме ветряк на «отлично» справляется с подогревом воды. Ибо нагрузка – тен, а он абсолютно не требователен к параметрам подаваемой на него электроэнергии. Можно избавиться от сложной дорогой электроники. Но расчеты показали значительные затраты на конструкцию, чтобы раскрутить генератор 500 Ватт.
Мощность, которую несет в себе ветер, рассчитывается по формуле P=0,6*S*V 3 , где:
P – мощность, Ватт
S – площадь, м 2
V – скорость ветра, м/с

Ветер, дующий на 1 м2 со скоростью 2 м/с «несет» в себе энергию 4,8 Ватт. Если скорость ветра увеличится до 10 м/с, то мощность возрастет до 600 Ватт. У самых лучших ветрогенераторов КПД 40-45%. С учетом этого для генератора мощностью 500 Ватт при ветре, скажем 5 м/с. Потребуется площадь, ометаемая винтом ветрогенератора, около 12 кв.м. Что соответствует винту диаметром почти 4 метра! Много денег – мало толку. Добавить сюда необходимость получения разрешения (ограничение по шумности). Кстати, в некоторых странах установку ветряка нужно согласовывать даже с орнитологами.

Но тут я вспомнили о Солнышке! Оно нам дарит очень много энергии. Об этом я впервые задумался после полета над замерзшим водохранилищем. Когда увидел массу льда толщиной более метра и размерами 15 на 50 километров, я подумал: “Это же сколько льда! Сколько его надо греть, чтобы расплавить!?” И все это сделает Солнце за полтора десятка дней. В справочниках можно найти плотность энергии, которая достигает поверхности земли. Цифра около 1 киловатт на метр квадратный звучит заманчиво. Но это на экваторе в ясный день. Насколько реально утилизировать солнечную энергию для хозяйственных нужд в наших широтах (центральная часть Украины), используя доступные материалы?

Какую реальную мощность, с учетом всех потерь, можно получить с оного квадратного метра?

Для выяснения этого вопроса я сделал первый параболический тепловой концентратор из картона (фокус в чаше параболы). Выкройку из секторов оклеил обычной пищевой фольгой. Понятно, что качество поверхности, да и отражающие способности фольги, очень далеки от идеала.

Но задача стояла именно “колхозными” методами нагреть определенный объем воды, чтобы выяснить какую мощность можно получить с учетом всех потерь. Выкройку можно рассчитать с помощью файла Exel который я нашел на просторах интернета у любителей самостоятельно строить параболические антенны.
Зная объем воды, её теплоемкость, начальную и конечную температуру можно рассчитать количество тепла, затраченного на ее нагрев. А, зная время нагрева, можно вычислить мощность. Зная габариты концентратора, можно определить какую практическую мощность можно получить с одного квадратного метра поверхности, на которую падает солнечный свет.

В качестве объема для воды была взята половинка алюминиевой банки, выкрашенная снаружи в черный цвет.

Емкость с водой помещается в фокус параболического солнечного концентратора. Солнечный концентратор ориентируется на Солнце.

Эксперимент №1

проводился около 7 часов утра в конце мая. Утро – далеко не идеальное время, но как раз утром в окно моей “лаборатории” светит Солнце.

При диаметре параболы 0.31 м расчеты показали, что была получена мощность порядка 13,3 Ватт . Т.е. как минимум 177 Ватт/м.кв. Тут следует отметить, что круглая открытая банка далеко не самый лучший вариант для получения хорошего результата. Часть энергии уходит на нагрев самой банки, часть излучается в окружающую среду, в том числе уносится потоками воздуха. В общем, даже в таких далеких от идеала условиях можно хоть что-то получить.

Эксперимент №2

Для второго эксперимента была сделана парабола диаметром 0.6 м . В качестве ее зеркала использовался металлизированный скотч, купленный в строительном магазине. Его отражающие качества незначительно лучше алюминиевой пищевой фольги.


Парабола имела большее фокусное расстояние (фокус за пределами чаши параболы).

Это дало возможность спроецировать лучи на одну поверхность нагревателя и получать в фокусе большую температуру. Парабола без труда прожигает лист бумаги за несколько секунд. Эксперимент проводился около 7 часов утра в начале июня. По результатам эксперимента с тем же объемом воды и той же тарой получил мощность 28 Ватт ., что соответствует примерно 102 Ватт/м.кв . Это меньше, чем в первом эксперименте. Это объясняется тем, что солнечные лучи от параболы ложилось на круглую поверхность банки не везде оптимально. Часть лучей проходили мимо, часть падали по касательной. Банка охлаждалась свежим утренним ветерком с одной стороны, в то время как подогревалась с другой. В первом эксперименте за счет того, что фокус был внутри чаши, банка прогревалась со всех сторон.

Эксперимент №3

Поняв, что достойный результат можно получить, сделав правильный теплоприемник, была изготовлена следующая конструкция: банка из жести внутри выкрашена в черный цвет имеет патрубки для подвода и отвода воды. Герметично закрыта прозрачным двойным стеклом. Термоизолирована.



Общая схема такова:

Нагрев происходит следующим образом: лучи от солнечного концентратора (1 ) через стекло проникают внутрь банки теплоприемника (2 ), где, попадая на черную поверхность, нагревают ее. Вода, соприкасаясь с поверхностью банки, поглощает тепло. Стекло плохо пропускает инфракрасное (тепловое) излучение, поэтому потери на излучение тепла минимизированы. Поскольку со временем стекло прогревается теплой водой, и начинает излучать тепло, было применено двойное остекление. Идеальный вариант, если между стеклами будет вакуум, но это труднодостижимая задача в домашних условиях. С обратной стороны банка теплоизолирована пенопластом, что также ограничивает излучение тепловой энергии в окружающую среду.

Теплоприемник (2 ) с помощью трубок (4,5 ) подключается к бачку (3 ) (в моем случае пластиковая бутылка). Дно бачка находится на 0.3м выше нагревателя. Такая конструкция обеспечивает конвекцию (самоциркуляцию) воды в системе.

В идеале расширительный бак и трубки должны быть тоже термоизолированы. Эксперимент проводился около 7 часов утра в середине июня. Результаты эксперимента таковы: Мощность 96.8 Ватт , что соответствует примерно 342 Ватт/м.кв.

Т.е. эффективность системы улучшилась более, чем в 3 раза только за счет оптимизации конструкции теплоприемника!

При проведении экспериментов 1,2,3 нацеливание параболы на солнце делалось вручную, «наглазок». Парабола и нагревательные элементы удерживались руками. Т.е. нагреватель не всегда был в фокусе параболы, поскольку руки человека устают и начинают искать более удобное положение, которое не всегда правильное с технической точки зрения.

Как вы могли заметить, с моей стороны были приложены усилия для обеспечения отвратительных условий для проведения эксперимента. Далеко не идеальные условия, а именно:
– не идеальная поверхность концентраторов
– не идеальные отражающие свойства поверхностей концентраторов
– не идеальное ориентирование на солнце
– не идеальное положение нагревателя
– не идеальное время для эксперимента (утро)

не смогли помешать получить вполне приемлемый результат для установки из подручных материалов.

Эксперимент №4

Далее нагревательный элемент был закреплен неподвижно относительно солнечного концентратора. Это позволило поднять мощность до 118 Ватт , что соответствует примерно 419 Ватт/м.кв . И это в утренние часы! С 7 до 8 утра!

Существуют и другие методы нагрева воды, с помощью Солнечных коллекторов. Коллекторы с вакуумными трубками дороги, а плоские имеют большие температурные потери в холодное время года. Применение солнечных концентраторов может решить эти проблемы, однако требует реализации механизма ориентирования на Солнце. В каждом способе есть как преимущества, так и недостатки.

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...