Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Конструктивные решения кирпичной стен. Конструктивные решения реконструируемых жилых зданий Конструктивные решения наружных стен зданий современной постройки


Дата публикации: 12 Января 2007 года

Предлагаемая вашему вниманию статья посвящена конструкции наружных стен современных зданий по показателям их теплозащиты и внешнему виду.

Рассматривая современные здания, т.е. здания, которые существуют в настоящее время, следует их разделять на здания, спроектированные до и после 1994 г. Отправной вехой в изменении принципов конструктивного решения наружных стен в отечественных зданиях является приказ Госстроя Украины № 247 от 27.12.1993 г., которым устанавливались новые нормативы по теплоизоляции ограждающих конструкций жилых и общественных зданий. В дальнейшем приказом Госстроя Украины № 117 от 27.06.1996 г. были введены поправки в СНиП II -3-79 «Строительная теплотехника», которые установили принципы проектирования теплоизоляции новых и реконструируемых жилых и общественных зданий.

После шести лет действия новых норм уже не возникают вопросы об их целесообразности. Годы практики показали, что был сделан правильный выбор, который, в то же время, требует тщательного многостороннего анализа и дальнейшего своего развития.

У зданий, спроектированных до 1994 г. (к сожалению, строительство зданий по старым теплоизоляционным нормативам встречается и до сих пор), наружные стены выполняют и несущие, и ограждающие функции. Причем несущие характеристики обеспечивались при достаточно незначительных толщинах конструкций, а выполнение ограждающих функций требовало существенных материальных затрат. Поэтому удешевление строительства шло по пути априори низкой энергоэффективности в силу известных причин для богатой энергоносителями страны. Эта закономерность относится в равной степени как к зданиям с кирпичными стенами, так и к зданиям из крупноразмерных бетонных панелей. В тепловом отношении различия между этими зданиями заключались только в степени термической неоднородности наружных стен. Стены из кирпичной кладки можно рассматривать как достаточно однородные в термическом отношении, что является преимуществом, так как равномерное температурное поле внутренней поверхности наружной стены - это один из показателей теплового комфорта. Однако для обеспечения теплового комфорта необходимо, чтобы абсолютное значение температуры поверхности было достаточно высоким. А для наружных стен зданий, созданных по нормативам до 1994 г., максимальной температурой внутренней поверхности наружной стены при расчетных температурах внутреннего и наружного воздуха могло быть только 12°С, что для условий теплового комфорта недостаточно.

Внешний вид стен из кирпичной кладки также оставлял желать лучшего. Это обусловлено тем, что отечественные технологии изготовления кирпича (и глиняного, и керамического) были далеки от совершенства, в результате и кирпич в кладке имел разные опенки. Несколько лучше выглядели здания из силикатного кирпича. В последние годы в нашей стране появился кирпич, изготовленный по всем требованиям современных мировых технологий. Это относится к Кор-чеватскому заводу, где выпускают кирпич с прекрасным внешним видом и относительно хорошими теплоизоляционными характеристиками. Из таких изделий можно строить здания, внешний вид которых не будет уступать зарубежным аналогам. Многоэтажные здания в нашей стране в основном строились из бетонных панелей. Для этого типа стен характерна существенная термическая неоднородность. В однослойных керамзито-бетонных панелях термическая неоднородность обусловлена наличием стыковых соединений (фото 1). Причем на ее степень, кроме конструктивного несовершенства, еще существенно влияет так называемый человеческий фактор - качество уплотнения и утепления стыковых соединений. А так как это качество в условиях советской стройки было низким, то и стыки протекали и промерзали, преподнося жителям все «прелести» сырых стен. Кроме того, повсеместное несоблюдение технологии изготовления керамзито-бетона приводило к повышенной плотности панелей и низкой их теплоизоляции.

Не намного лучше обстояли дела и в зданиях с трехслойными панелями. Так как ребра жесткости панелей обуславливали термическую неоднородность конструкции, проблема стыковых соединений оставалась актуальной. Внешний вид бетонных стен был крайне непритязателен (фото 2) - цветных бетонов у нас не было, а краски были не надежны. Понимая эти проблемы, архитекторы пытались придать разнообразие зданиям за счет нанесения плитки на наружную поверхность стен. С точки зрения законов тепломассообмена и циклических температурно-влажностных воздействий такое конструктивно-архитектурное решение является абсолютным нонсенсом, что и подтверждается внешним видом наших домов. При проектировании
после 1994 г. определяющей стала энергоэффективность сооружения и его элементов. Поэтому пересмотрены сложившиеся принципы проектирования зданий и их ограждающих конструкций. В основу обеспечения энергоэффективности положено строгое соблюдение функционального назначения каждого элемента конструкции. Это относится как к зданию в целом, так и к ограждающим конструкциям. В практику отечественного строительства уверенно вошли так называемые каркасно-монолитные здания, где прочностные функции выполняет монолитный каркас, а наружные стены несут только ограждающие (тепло- и звукоизоляционные) функции. В то же время сохранились и успешно развиваются конструктивные принципы зданий с несущими наружными стенами. Последние решения интересны еще и тем, что они полностью применимы для реконструкции тех зданий, которые были рассмотрены в начале статьи и которые повсеместно требуют реконструкции.

Конструктивным принципом наружных стен, которые в одинаковой мере могут применяться для строительства новых зданий и для реконструкции существующих, является сплошное утепление и утепление с воздушной прослойкой. Эффективность данных конструктивных решений определяется оптимальным подбором теплофизических характеристик многослойной конструкции - несущей или самонесущей стены, утеплителя, фактурных слоев, наружного отделочного слоя. Материал основной стены может быть любым и определяющие требования к нему -прочностные и несущие.

Теплоизоляционные характеристики в этом решении стены полностью описываются теплопроводностью утеплителя, в качестве которого используются пенополистирол ПСБ-С, минераловатные плиты, пенобетон, керамические материалы. Пенополистирол - теплоизоляционный материал с низкой теплопроводностью, долговечный и технологичный при утеплении. Его производство налажено на отечественных заводах (комбинаты «Стироль» в Ирпене, заводы в Горловке, Житомире, Буче). Основной недостаток - материал горюч и по отечественным пожарным нормам имеет ограниченное применение (для малоэтажных зданий, или же при наличии значительной защиты из негорючей облицовки). При утеплении наружных стен многоэтажных зданий к ПСБ-С предъявляются еще и определенные требования по прочности: плотность материала должна быть не менее 40 кг/м3.

Минераловатные плиты - теплоизоляционный материал с низкой теплопроводностью, долговечный, технологичный при утеплении, отвечает требованиям отечественных пожарных норм для наружных стен зданий. На рынке Украины, как и на рынках многих других стран Европы, применяются минераловатные плиты концернов ROCKWOOL, PAROC, ISOVER и др. Характерной особенностью этих фирм является широкая палитра производимых изделий - от мягких плит до жестких. При этом каждое наименование имеет строго адресное назначение - для утепления кровли, внутри стен, фасадное утепление и пр. Например, для фасадного утепления стен по рассматриваемым конструктивным принципам фирма ROCKWOOL выпускает плиты «FASROCK», а фирма PAROC -плиты L-4. Характерной особенностью этих материалов является их высокая формоустойчивость, что особенно важно при утеплении с вентилируемой воздушной прослойкой, низкая теплопроводность и гарантированное качество изделий. По теплопроводности эти минера-ловатные плиты за счет своей структуры не хуже пенополистирола (0,039-0,042 ВтДмК). Адресное изготовление плит обуславливает эксплуатационную надежность утепления наружных стен. Совершенно не приемлемо применение для рассматриваемых конструктивных вариантов матов или мягких минераловатных плит. К сожалению, в отечественной практике встречаются решения утепления стен с вентилируемой воздушной прослойкой, когда в качестве утеплителя используют минераловатные маты. Тепловая надежность подобных изделий вызывает серьезные опасения, и факт достаточно широкого их применения может объясняться только отсутствием в Украине системы ввода в эксплуатацию новых конструктивных решений. Важным элементом в конструкции стен с фасадным утеплением является наружный защитно-декоративный слой. Он не только определяет архитектурное восприятие здания, но и обуславливает влажностное состояние утеплителя, являясь одновременно защитой от атмосферных воздействий и для сплошного утепления элементом удаления парообразной влаги, попадающей в утеплитель под воздействием сил тепло- массообмена. Поэтому особое значение приобретает оптимальный подбор: утеплитель - защитно-отделочный слой.

Выбор защитно-отделочных слоев определяется прежде всего экономическими возможностями. Фасадное утепление с вентилируемой воздушной прослойкой в 2-3 раза дороже, чем сплошное утепление, что определяется уже не энергоэффективностью, так как слой утеплителя в обоих вариантах один и тот же, а стоимостью защитно-отделочного слоя. При этом в общей стоимости системы утепления цена непосредственно утеплителя может составлять (особенно для вышеуказанных некорректных вариантов применения дешевых неплитных материалов) всего 5-10%. Рассматривая фасадное утепление, нельзя не остановиться на утеплении помещений изнутри. Таково уж свойство нашего народа, что во всех практических начинаниях, не взирая на объективные законы, он ищет неординарных путей, будь-то социальные революции или строительство-реконструкция зданий. Внутреннее утепление привлекает всех своей дешевизной - затраты только на утеплитель, а его выбор достаточно широкий, так как нет необходимости в строгом соответствии критериям надежности, следовательно, стоимость утеплителя уже будет не высока при тех же теплоизоляционных показателях, отделка минимальна - любой листовой материал и обои, трудозатраты минимальны. Снижается полезный объем помещений - это мелочи по сравнению с постоянным тепловым дискомфортом. Эти доводы были бы хороши, если бы подобное решение не противоречило закономерностям формирования нормального тепловлажностного режима конструкций. А нормальным этот режим можно назвать только при условии ненакопления в нем влаги в холодный период года (длительность которого для Киева составляет 181 сутки -ровно половина года). При невыполнении этого условия, то есть при конденсации парообразной влаги, которая попадает в наружную конструкцию под действием сил тепло- массообмена, в толще конструкции происходит намокание материалов конструкции и, прежде всего, теплоизоляционного слоя, теплопроводность которого при этом увеличивается, что вызывает еще большую интенсивность дальнейшей конденсации парообразной влаги. Результат - потеря теплоизоляционных свойств, образование плесени, грибков и прочие неприятности.

На графиках 1, 2 представлены характеристики тепловлажностного режима стен при их внутреннем утеплении. В качестве основной стены рассмотрена керамзитобетонная стена, в качестве теплоизолирующих слоев - наиболее часто применяемые пенобетон и ПСБ-С. Для обоих вариантов наблюдается пересечение линий парциального давления водяного пара е и насыщенного водяного пара Е, что сигнализирует о возможности конденсации паров уже в зоне пересечения, которая находится на границе утеплитель - стена. К чему приводит такое решение на уже эксплуатируемых зданиях, где стены находились в неудовлетворительном тепловлажностном режиме (фото 3) и где попытались подобным решением этот режим улучшить, видно на фото 4. Совершенно иная картина наблюдается при перемене мест слагаемых, то есть размещении слоя утеплителя на фасадной стороне стены (график 3).

График №1

График №2

График №3

Необходимо отметить, что ПСБ-С является материалом с закрытопористой структурой и с низким коэффициентом паропроницаемости. Однако и для такого вида материалов, как и при использовании минераловатных плит (график 4), создаваемый при утеплении механизм термовла-гопереноса обеспечивает нормальное влажностное состояние утепляемой стены. Таким образом, если и приходится выбирать внутреннее утепление, а это может быть для зданий с архитектурной ценностью фасада, необходимо тщательно оптимизировать состав теплоизоляции, чтобы избежать или хотя бы минимизировать последствия режима.

График №4

Стены зданий колодцевой кирпичной кладки

Теплоизолирующие свойства стен определяются слоем утеплителя, требования к которому в основном обуславливаются его теплоизоляционными характеристиками. Прочностные свойства утеплителя, его устойчивость к атмосферным воздействиям для такого типа конструкций не играют определяющую роль. Поэтому в качестве утеплителя могут использоваться плиты ПСБ-С плотностью 15-30 кг/м3, минераловатные мягкие плиты и маты. При проектировании стен такой конструкции необходимо обязательно рассчитывать приведенное сопротивление теплопередаче, учитывающее влияние сплошных кирпичных перемычек на интегральный тепловой поток через стены.

Стены зданий каркасно-монолитной схемы .

Характерной особенностью этих стен является возможность обеспечения относительно равномерного температурного поля на достаточно большой площади внутренней поверхности наружных стен. В то же время несущие колонны каркаса являются массивными теплопроводными включениями, что обуславливает необходимость обязательной проверки соответствия температурных полей нормативным требованиям. Наиболее распространено в качестве наружного слоя стен данной схемы использование кирпичной кладки в четверть кирпича, 0,5 кирпича или в один кирпич. При этом используется качественный импортный или отечественный кирпич, что придает зданиям привлекательный архитектурный облик (фото 5).

С точки зрения формирования нормального влаж-ностного режима наиболее оптимальным является применение наружного слоя в четверть кирпича, однако это требует высокого качества как самого кирпича, так и работы по устройству кладки. К сожалению, в отечественной практике для многоэтажных зданий не всегда может обеспечиваться надежная кладка даже в 0,5 кирпича, и потому в основном используется наружный слой в один кирпич. Такое решение уже требует тщательного анализа тепловлажностного режима конструкций, только после которого можно принимать вывод о жизнеспособности конкретной стены. В качестве утеплителя в Украине широко используется пенобетон. Наличие вентилируемой воздушной прослойки позволяет удалять влагу из слоя утеплителя, что гарантирует нормальный тепловлажностный режим конструкции стены. К недостаткам этого решения следует отнести то, что в теплоизоляционном отношении совершенно не работает внешний слой в один кирпич, наружный холодный воздух напрямую обмывает утеплитель из пенобетона, что обуславливает необходимость предъявления высоких требований к его морозостойкости. Учитывая то, что для теплоизоляции следует использовать пенобетон плотностью 400 кг/м3, а в практике отечественного производства часто наблюдается нарушение технологии, и пенобетон, используемый в таких конструктивных решениях, имеет фактическую плотность выше указанной (до 600 кг/м3), данное конструктивное решение требует тщательного контроля при монтаже стен и при приемке здания. В настоящее время разработаны и находятся в

стадии предзавод-ской готовности (строится производственная линия) перспективные тепло- звукоизоляционные и, одновременно, отделочные материалы, которые могут применяться в конструкциях стен зданий каркасно-монолитной схемы.К таким материалам относятся плиты и блоки на основе керамического минерального материала «Сиолит». Очень интересным решением конструкций наружных стен является светопрозрачная изоляция. При этом формируется такой тепловлажностный режим, при котором отсутствует конденсация паров в толще утеплителя, а светопрозрачная изоляция является не только тепловой изоляцией, но и источником теплоты в холодный период года.

[ наружные стены дома, технология, классификация, каменщик, дизайн и кладка несущих стен ]

Быстрый переход:

  • Температурно-усадочные и осадочные швы
  • Классификация наружных стен
  • Конструкции одно- и многослойных стен
  • Панельные бетонные стены и их элементы
  • Проектирование панелей несущих и самонесущих однослойных стен
  • Бетонные панели трехслойной конструкции
  • Методы решения основных задач проектирования стен в бетонных панельных конструкциях
  • Вертикальные стыки и Связи панелей наружных стен с внутренними
  • Тепло и изоляционная способность стыков, виды стыков
  • Композиционные и декоративные особенности панельных стен

Конструкции наружных стен крайне разнообразны; они определяются строительной системой здания, материалом стен и их статической функцией.

Общие требования и классификация конструкций

Рис.2.Деформационные швы

Рис.3.Детали устройстватемпературныхшвов вкирпичных и панельных зданиях

Температурно-усадочные швы устраивают во избежание образования в трещин и перекосов, вызываемых концентрацией усилий от воздействия переменных температур и усадки материала (каменной кладки, монолитных или сборных бетонных конструкций и др.). Температурно-усадочные швы рассекают конструкции только наземной части здания. Расстояния между температурно-усадочными швами назначают в соответствии с климатическими условиями и физико-механическими свойствами стеновых материалов. Для наружных стен из глиняного кирпича на растворе марки М50 и более расстояния между температурно-усадочными швами 40-100 м принимают по СНиП «Каменные и армокаменные конструкции», для наружных стен из бетонных панелей 75-150 м по ВСН32-77, Госгражданстрой «Инструкция по проектированию конструкций панельных жилых зданий». При этом наименьшие расстояния относятся к наиболее суровым климатическим условиям.

В зданиях с продольными несущими стенами швы устраивают в зоне примыкания к поперечным стенам или перегородкам, в зданиях с поперечными несущими стенами швы часто устраивают в виде двух спаренных стен. Наименьшая ширина шва составляет 20 мм. Швы необходимо защищать от продувания, промерзания и сквозных протечек с помощью металлических компенсаторов, герметизации, утепляющих вкладышей. Примеры конструктивных решений температурно-усадочных швов в кирпичных и панельных стенах даны на рис. 3.

Осадочные швы следует предусматривать в местах резких перепадов этажности здания (осадочные швы первого типа), а также при значительной неравномерности деформаций основания по протяженности здания, вызванной спецификой геологического строения основания (осадочные швы второго типа). Осадочные швы первого типа назначают для компенсации различий вертикальных деформаций наземных конструкций высокой и низкой частей здания, в связи с чем их устраивают аналогично температурно-усадочным только в наземных конструкциях. Конструкция шва в бескаркасных зданиях предусматривает устройство шва скольжения в зоне опирания перекрытия малоэтажной части здания на стены многоэтажной, в каркасных - шарнирное опи-рание ригелей малоэтажной части на колонны многоэтажной. Осадочные швы второго типа разрезают здание на всю высоту - от конька до подошвы фундамента. Такие швы в бескаркасных зданиях конструируют в виде парных поперечных стен, в каркасных - парных рам. Номинальная ширина осадочных швов первого и второго типа 20 мм.Особенности проектирования сейсмостойких здании, а также зданий, строящихся на просадочных, подрабатываемых и вечномерзлых грунтах, рассмотрены в отдельном разделе.

Рис.4.Наружныестены виды

Конструкции наружных стен классифицируют по признакам:

  • статической функции стены, определяемой ее ролью в конструктивной системе здания;
  • материала и технологии возведения, щ деляемых строительной системой здания;
  • конструктивного решения - в виде однослойной или слоистой ограждающей конструкции.

По статической функции различают несущие, самонесущие или ненесущие конструкции стен (рис. 4).Г

Несущие стены помимо вертикальной нагрузки от собственной массы воспринимая передают фундаментам нагрузки от смежных конструкций: перекрытий, перегородок, крыш и пр.

Самонесущие стены воспринимают вертикальную нагрузку только от собственной массы (включая нагрузку от балконов, эркеров, парапетов и других элементов стены) и передают ее на фундаменты непосредственно либо через цокольные панели, рандбалки, ростверк или другие конструкции.

Таблица 1.Конструкциинаружных стениих применение

1 - кирпич; 2 - мелкий блок; 3, 4 - утеплитель и воздушный прослоек; 5 - легкий бетон; 6 - автоклавный ячеистый бетон; 7 - конструктивный тяжелый или легкий бетон; 8 - бревно; 9 - конопатка; 10 - брус; 11 - деревянный каркас; 12 - пароизоляция; 13 - воздухонепроницаемый слой; 14 - обшивка из досок, водостойкой фанеры, ДСП или др.; 15 - обшивка из неорганических листовых материалов; 16 - металлический или асбестоцементный каркас; 17 - вентилируемый воздушный прослоек

Наружные стены могут быть однослойной или слоистой конструкции. Однослойные стены возводят из панелей, бетонных или каменных блоков, монолитного бетона, камня, кирпича, деревянных бревен или брусьев. В слоистых стенах выполнение разных функций возложено на различные материалы. Функции прочности обеспечивают бетон, камень, дерево; функции долговечности - бетон, камень, дерево или листовой материал (алюминиевые сплавы, эмалированная сталь, асбестоцемент или др.); функции теплоизоляции - эффективные утеплители (минераловатные плиты, фибролит, пенополистирол и др.); функции пароизоляции - рулонные материалы (прокладочный рубероид, фольга и др.), плотный бетон или мастики; декоративные функции-различные облицовочные материалы. В число слоев такой ограждающей конструкции может быть включен воздушный прослоек. Замкнутый-для повышения ее сопротивления теплопередаче, вентилируемый -для защиты помещения от радиационного перегрева либо для уменьшения деформаций наружного облицовочного стены.

Конструкции одно- и многослойных стен могут быть выполнены полносборными или в традиционной технике.

Основные типы конструкций наружных стен и области их применения приведены втабл. 1.

Назначение статической функции наружной стены, выбор материалов и конструкций осуществляют с учетом требований СНиП «Противопожарные нормы проектирования зданий и сооружений». Согласно этим нормам, несущие стены, как правило, должны быть несгораемыми. Применение трудносгораемых несущих стен (например, деревянных оштукатуренных) с пределом огнестойкости не менее 0,5 ч допускается только в одно-двухэтажных домах. Предел огнестойкости несгораемых конструкций стен должен составлять не менее 2 ч, в связи с чем их необходимо выполнять из каменных или бетонных материалов. Высокие требования к огнестойкости несущих стен, а также колонн и столбов обусловлены их ролью в сохранности здания или сооружения. Повреждение при пожаре вертикальных несущих конструкций может привести к обрушению всех опирающихся на них конструкций и здания в целом.

Ненесущие наружные стены проектируют несгораемыми или трудносгораемыми с существенно меньшими пределами огнестойкости (0,25-0,5 ч), так как разрушение этих конструкций от воздействия огня приводит только к локальным повреждениям здания.

Несгораемые ненесущие наружные стены следует применять в жилых домах выше 9 этажей, при меньшей этажности допускается применение трудносгораемых конструкций.

Толщину наружных стен выбирают по наибольшей из величин, полученных в результате статического и теплотехнического расчетов, и назначают в соответствии с конструктивными и теплотехническими особенностями ограждающей конструкции.

В полносборном бетонном домостроении расчетную толщину наружной стены увязывают с ближайшей большей величиной из унифицированного ряда толщин наружных стен, принятых при централизованном изготовлении формовочного оборудования 250, 300, 350, 400 мм для панельных и 300, 400, 500 мм для крупноблочных зданий.

Расчетную толщину каменных стен согласуют с размерами кирпича или камня и принимают равной ближайшей большей конструктивной толщине, получаемой при кладке. При размерах кирпича 250X120X65 или 250Х X 120x88 мм (модульный кирпич) толщина стен сплошной кладки в 1; 1 1/2; 2; 2 1/2 и 3 кирпича (с учетом вертикальных швов по 10 мм между отдельными камнями) составляет 250, 380, 510, 640 и 770 мм.

Конструктивная толщина стены из пиленого камня или легкобетонных мелких блоков, унифицированные размеры которых составляют 390X190X188 мм, при кладке в один камень равна 390 и в 1 /2 г - 490 мм.

Толщину стен из небетонных материалов с эффективными утеплителями в некоторых случаях принимают больше полученной по теплотехническому расчету из-за конструктивных требований: увеличение размеров сечения стены может оказаться необходимым для устройства надежной изоляции стыков и сопряжений с заполнением проемов.

Конструирование стен основано на всестороннем использовании свойств применяемых материалов и решает задачи создания необходимого уровня прочности, устойчивости, долговечности, изоляционных и архитектурно-декоративных качеств.

Толщину наружных стен выбирают по наибольшей из величин, полученных в результате статического и теплотехнического расчетов, и назначают в соответствии с конструктивными и теплотехническими особенностями ограждающей конструкции.

В полносборном бетонном домостроении расчетную толщину наружной стены увязывают с ближайшей большей величиной из унифицированного ряда толщин наружных стен, принятых при централизованном изготовлении формовочного оборудования 250, 300, 350, 400 мм для панельных и 300, 400, 500 мм для крупноблочных зданий.

Расчетную толщину каменных стен согласуют с размерами кирпича или камня и принимают равной ближайшей большей конструктивной толщине, получаемой при кладке. При размерах кирпича 250×120×65 или 250×120×88 мм (модульный кирпич) толщина стен сплошной кладки в 1; 1,5; 2; 2,5 и 3 кирпича (с учетом вертикальных швов по 10 мм между отдельными камнями) составляет 250, 380, 510, 640, и 770 мм.

Конструктивная толщина стены из пиленого камня или легко бетонных мелких блоков, унифицированные размеры которых составляют 390×190×188 мм, при кладке в один камень равна 390 и в 1,5 – 490 мм.

Конструирование стен основано на всестороннем использовании свойств применяемых материалов и решает задачи создания необходимого уровня прочности, устойчивости, долговечности, изоляционных и архитектурно-декоративных качеств.

В соответствии с современными требованиями экономного расходования материалов при проектировании малоэтажных жилых зданий с каменными стенами стараются использовать максимальное количество местных строительных материалов. Например, в районах, удаленных от транспортных магистралей, для возведения стен используют мелкие камни местного производства или монолитный бетон в сочетании с местными утеплителями и на местных заполнителях, для которых требуется только привозной цемент. В поселках же, располагаемых вблизи индустриальных центров, проектируют дома со стенами из крупных блоков или панелей, изготовляемых на предприятиях этого региона. В настоящее время все более широкое применение каменные материалы получают при строительстве домов на садово-огородных участках.

При проектировании малоэтажных домов обычно используют две схемы конструктивного решения наружных стен – сплошные стены из однородного материала и облегченные многослойные стены из материалов различной плотности. Для возведения внутренних стен используют только сплошную кладку. При проектировании наружных стен по схеме сплошной кладки предпочтение отдают менее плотным материалам. Такой прием позволяет достигнуть минимальной толщины стен по теплопроводности и более полно использовать несущую способность материала. Строительные материалы большой плотности выгодно использовать в сочетании с материалами малой плотности (облегченные стены). Принцип устройства облегченных стен основан на том, что несущие функции выполняет слой (слои) из материалов большой плотности (γ > 1600 кг/м 3), а теплоизолятором служит материал малой плотности. Например, вместо сплошной наружной стены из глиняного кирпича толщиной 64 см можно использовать облегченную конструкцию стены из слоя того же кирпича толщиной 24 см, с утеплителем из фибролита толщиной 10 см. Такая замена приводит к снижению массы стены в 2,3 раза.


Для изготовления стен малоэтажных домов используют искусственные и естественные мелкие камни. В настоящее время в строительстве используют искусственные обжиговые камни (кирпич глиняный полнотелый, пустотелый, пористый и керамические блоки); безобжиговые камни (силикатный кирпич, пустотелые блоки из тяжелого бетона и блоки сплошные из легкого бетона); естественные мелкие камни – рваный бут, пиленые камни (туф, пемза, известняк, песчаник, ракушечник и др.).

Размер и вес камней проектируют в соответствии с технологией ручной кладки и с учетом максимальной механизации работ. Стены выкладывают из камней с заполнением зазора между ними раствором. Чаще используют цементно-песчаные растворы. Для кладки внутренних стен используют обычный песок, а для наружных стен песок малой плотности (перлитовый и др.). Кладку стен ведут с обязательным соблюдением перевязки швов (4.6) по рядам.

Как уже было отмечено, ширина кладки стены всегда кратна числу половинок кирпича. Ряды, выходящие на фасадную поверхность кладки, называют лицевой верстой , а обращенные на внутреннюю сторонувнутренней верстой . Ряды кладки между внутренней и лицевой верстой называют забуткой . Кирпичи, уложенные длинной стороной вдоль стены, образуют ложковый ряд , а уложенные поперек стены – тычковый ряд . Система кладки (4.7) образуется определенным расположением камней в стене.

Рядность кладки определяется числом ложковых и тычковых рядов. При равномерном чередовании ложковых и тычковых рядов получается двухрядная (цепная) система кладки (рис.4.5б). Менее трудоемкая многорядная система кладки, при которой один тычковый ряд кирпичей перевязывает пять ложковых рядов (рис.4.5а). В стенах из мелких блоков, возводимых по многорядной системе, один тычковый ряд перевязывает два ложковых ряда кладки (рис.4.5в).

Рис.4.5. Виды ручной кладки стен: а) – многорядная кирпичная кладка; б) – цепная кирпичная кладка; в) – многорядная каменная кладка; г) – цепная каменная кладка

Сплошную кладку из камней большой плотности используют только для возведения внутренних стен и столбов и наружных стен неотапливаемых помещений (рис.4.6а-ж). В некоторых случаях эту кладку используют для возведения наружных стен по многорядной системе (рис.4.6а-в, д). Двухрядную систему кладки камней используют только в необходимых случаях. Например, в керамических камнях щели пустот рекомендуется располагать поперек теплового потока с целью снижения теплопроводности стены. Это достигается при цепной системе кладки.

Облегченные наружные стены проектируют двух типов – с утеплителем между двух стенок сплошной кладки или с воздушной прослойкой (рис.4.6и-м) и с облицовкой утеплителем стены сплошной кладки (рис.4.6н, о). В первом случае различают три основных конструктивных варианта стен – стены с горизонтальными выпусками анкерных камней, стены с вертикальными диафрагмами из камней (колодцевая кладка) и стены с горизонтальными диафрагмами. Первый вариант используется только в случаях применения в качестве утеплителя легкого бетона, который замоноличивает анкерные камни. Второй вариант приемлем для утеплителя в виде заливки легкого бетона и укладки термовкладышей (рис.4.6к). Третий вариант используют при утеплителях из сыпучих материалов (рис.4.6л) или из легко бетонных камней. Сплошная кладка стен с воздушной прослойкой (рис.4.6м) также относится к категории облегченных стен, так как замкнутая воздушная прослойка выполняет функции слоя утеплителя. Толщину прослоек целесообразно принимать равной 2 см. Увеличение прослойки практически не дает увеличения термического ее сопротивления, а уменьшение резко снижает эффективность такой теплоизоляции. Чаще воздушную прослойку используют в сочетании с плитами утеплителя (рис.4.6к, о).

Рис.4,6, Варианты ручной кладки стен малоэтажных жилых зданий: а), б) – сплошные наружные стены из кирпича; в) – сплошная внутренняя кирпичная стена; д), ж) – сплошные наружные стены из камней; г), е) – сплошные внутренние стены из камней; и)-м) – облегченные стены с внутренним утеплением; н), о) – облегченные стены с наружным утеплением; 1 – кирпич; 2 – штукатурка или облицовка листами; 3 – камень искусственный; 4 – утеплитель плитный; 5 – воздушная прослойка; 6 – пароизоляция; 7 – деревянная антисептированная рейка; 8 – засыпка; 9 – растворная диафрагма; 10 – легкий бетон; 11 – камень естественный морозостойкий

Для утепления каменных стен со стороны улицы применяют жесткий плитный утеплитель из легких бетонов, пеностекла, фибролита в сочетании с атмосферостойкой и прочной облицовкой (листы асбестоцемента, доски и др.). Вариант утепления стен снаружи эффективен только при отсутствии доступа холодного воздуха в зону контакта несущего слоя со слоем утепления. Для утепления наружных стен со стороны помещения используют полужесткий плитный утеплитель (камышит, соломит, минераловата и др.), располагающийся вплотную к поверхности первых или с образованием воздушной прослойки, толщиной 16 - 25 мм – «на относе». Плиты «на относе» крепят к стене металлическими зигзагообразными скобами или прибивают к деревянным антисептированным рейкам. Открытую поверхность слоя утепления закрывают листами сухой штукатурки. Между ними и слоем утепления обязательно располагают слой пароизоляции из пергамина, полиэтиленовой пленки, металлической фольги и др.

Изучите и проанализируйте вышеизложенный материал и ответьте на предложенный вопрос.

Вопрос 4.2. Могут ли ряды кирпичей, уложенные длинной стороной вдоль стены, называться тычковыми рядами?

4.2. ответ: да

Общие требования и классификация

Одной из наиболее важных и сложных конструктивных элементов здания является наружная стена (4.1).

Наружные стены подвергаются многочисленным и разнообразным силовым и несиловым воздействиям (рис.4.1). Они воспринимают собственную массу, постоянные и временные нагрузки от перекрытий и крыш, воздействия ветра, неравномерных деформаций основания, сейсмических сил и др. С внешней стороны наружные стены подвержены воздействию солнечной радиации, атмосферных осадков, переменных температур и влажности наружного воздуха, внешнего шума, а с внутренней – воздействию теплового потока, потока водяного пара, шума.

Рис.4.1. Нагрузки и воздействия на конструкцию наружной стены.

Выполняя функции наружной ограждающей конструкции и композиционного элемента фасадов, а часто и несущей конструкции, наружная стена должна отвечать требованиям прочности, долговечности и огнестойкости, соответствующим классу капитальности здания, защищать помещения от неблагоприятных внешних воздействий, обеспечивать необходимый температурно-влажностный режим ограждаемых помещений, обладать декоративными качествами. Одновременно конструкция наружной стены должна удовлетворять требованиям индустриальности, а также экономическим требованиям минимальной материалоемкости и стоимости, так как наружные стены являются наиболее дорогой конструкцией (20 – 25% стоимости всех конструкций здания).

В наружных стенах обычно располагают оконные проемы для освещения помещений и дверные проемы – входные и для выхода на балконы и лоджии. В комплекс конструкций стены включают заполнение проемов окон, входных и балконных дверей, конструкции открытых помещений. Эти элементы и их сопряжения со стеной должны отвечать перечисленным выше требованиям. Поскольку статические функции стен и их изоляционные свойства достигаются при взаимодействии с внутренними несущими конструкциями, разработка конструкций наружных стен включает решение сопряжений и стыков с перекрытиями, внутренними стенами или каркасом.



Деформационные швы

Наружные стены, а вместе с ними и остальные конструкции здания при необходимости и в зависимости от природно-климатических и инженерно-геологических условий строительства, а также с учетом особенностей объемно-планировочных решений рассекаются вертикальными деформационными швами (4.2) различных типов: температурно-усадочными, осадочными, антисейсмическими и др. (рис.4.2).

Рис.4.2. Деформационные швы: а – температурно-усадочный; б – осадочный І типа; в – осадочный ІІ типа; г – антисейсмический.

Температурно-усадочные швы устраивают во избежание образования в стенах трещин и перекосов, вызываемых концентрацией усилий от воздействия переменных температур и усадки материала (каменной кладки, монолитных или сборных бетонных конструкций и др.). Температурно-усадочные швы рассекают конструкции только наземной части здания. Расстояния между температурно-усадочными швами назначают в соответствии с климатическими условиями и физико-механическими свойствами стеновых материалов. Так, например, для наружных стен из глиняного кирпича на растворе марки М50 и более расстояния между температурно-усадочными швами 40 – 100 м принимают по СНиП ІІ-22-81 «Каменные и армокаменные конструкции». При этом наименьшее расстояние относится к наиболее суровым климатическим условиям.

В зданиях с продольными несущими стенами швы устраивают в зоне примыкания к поперечным стенам или перегородкам, в зданиях с поперечными несущими стенами швы часто устраивают в виде двух спаренных стен. Наименьшая ширина шва составляет 20 мм. Швы необходимо защищать от продувания, промерзания и сквозных протечек с помощью металлических компенсаторов, герметизации, утепляющих вкладышей. Примеры конструктивных решений температурно-усадочных швов в кирпичных и панельных стенах даны на рис.4.3.

Рис.4.3. Детали устройства температурных швов в кирпичных и панельных зданиях: а – с продольными несущими стенами (в зоне поперечной диафрагмы жесткости); б – с поперечными стенами при парных внутренних стенах; в – в панельных зданиях с поперечными стенами; 1 – наружная стена; 2 – внутренняя стена; 3 – утепляющий вкладыш в обертке из рубероида; 4 – конопатка; 5 – раствор; 6 – нащельник; 7 – плита перекрытия; 8 – панель наружной стены; 9 – то же, внутренней.

Осадочные швы следует предусматривать в местах резких перепадов этажности здания (осадочные швы первого типа), а также при значительной неравномерности деформаций основания по протяженности здания, вызванной спецификой геологического строения основания (осадочные швы второго типа). Осадочные швы первого типа назначают для компенсации различий вертикальных деформаций наземных конструкций высокой и низкой частей здания, в связи с чем их устраивают аналогично температурно-усадочным только в наземных конструкциях. Конструкция шва в бескаркасных зданиях предусматривает устройство шва скольжения в зоне опирания перекрытия малоэтажной части здания на стены многоэтажной, в каркасных – шарнирное опирание ригелей малоэтажной части на колонны многоэтажной. Осадочные швы второго типа разрезают здание на всю высоту – от конька до подошвы фундамента. Такие швы в бескаркасных зданиях конструируют в виде парных рам. Номинальная ширина осадочных швов первого и второго типа 20 мм.

Классификация стен

Конструкции наружных стен классифицируют по следующим признакам:

Статической функции стены, определяемой ее ролью в конструктивной системе здания;

Материала и технологии возведения, определяемыми строительной системой здания;

Конструктивного решения – в виде однослойной или слоистой ограждающей конструкции.

По статической функции различают (рис.4.4) несущие стены (4.3), самонесущие стены (4.4) и ненесущие стены (4.5).

Рис.4.4. Классификация наружных стен по несущей способности: а – несущие; б – самонесущие; в - ненесущие

Ненесущие стены поэтажно оперты на смежные внутренние конструкции здания (перекрытия, стены, каркас).

Несущие и самонесущие стены воспринимают наряду с вертикальными и горизонтальные нагрузки, являясь вертикальными элементами жесткости сооружений. В зданиях с ненесущими наружными стенами функции вертикальных элементов жесткости выполняют каркас, внутренние стены, диафрагмы или стволы жесткости.

Несущие и ненесущие наружные стены могут быть применены в зданиях любой этажности. Высота самонесущих стен ограничена в целях предотвращения неблагоприятных в эксплуатационном отношении взаимных смещений самонесущих и внутренних несущих конструкций, сопровождающихся местными повреждениями отделки помещений и появлением трещин. В панельных домах, например, допустимо применение самонесущих стен при высоте здания не более 4 этажей. Устойчивость самонесущих стен обеспечивают гибкие связи с внутренними конструкциями.

Несущие наружные стены применяют в зданиях различной высоты. Предельная этажность несущей стены зависит от несущей способности и деформативности ее материала, конструкции, характера взаимосвязей с внутренними конструкциями, а также от экономических соображений. Так, например, применение панельных легкобетонных стен целесообразно в домах высотой до 9 – 12 этажей, несущих кирпичных наружных стен – в зданиях средней этажности, а стен стальной решетчатой оболочковой конструкции – в 70 – 100 этажных зданиях.

По материалу различают четыре основных типа конструкций стен: бетонные, каменные, из небетонных материалов и деревянные. В соответствии со строительной системой каждый тип стены содержит несколько видов конструкций: бетонные стены – из монолитного бетона, крупных блоков или панелей; каменные стены – кирпичные или из мелких блоков, стены из каменных крупных блоков и панелей; деревянные стены – рубленые, каркасно-щитовые, щитовые и панельные.

Наружные стены могут быть однослойной или слоистой конструкции. Однослойные стены возводят из панелей, бетонных или каменных блоков, монолитного бетона, камня, кирпича, деревянных бревен или брусьев. В слоистых стенах выполнение разных функций возложено на различные материалы. Функции прочности обеспечивают бетон, камень, дерево; функции долговечности – бетон, камень, дерево или листовой материал (алюминиевые сплавы, эмалированная сталь, асбестоцемент или др.); функции теплоизоляции – эффективные утеплители (минераловатные плиты, фибролит, пенополистирол и др.); функции пароизоляции – рулонные материалы (прокладочный рубероид, фольга и др.), плотный бетон или мастики; декоративные функции – различные облицовочные материалы. В число слоев такой ограждающей конструкции может быть включена воздушная прослойка. Замкнутая – для повышения ее сопротивления теплопередаче, вентилируемая – для защиты помещения от радиационного перегрева либо для уменьшения деформаций наружного облицовочного слоя стены.

Вопрос 4.1. Могут ли стены называться несущими, если они воспринимают нагрузку не только от собственного веса, но и от других элементов здания?

4.1. ответ: да

4.1. ответ: НЕТ

Конструктивные решения стен

Толщину наружных стен выбирают по наибольшей из величин, полученных в результате статического и теплотехнического расчетов, и назначают в соответствии с конструктивными и теплотехническими особенностями ограждающей конструкции.

В полносборном бетонном домостроении расчетную толщину наружной стены увязывают с ближайшей большей величиной из унифицированного ряда толщин наружных стен, принятых при централизованном изготовлении формовочного оборудования 250, 300, 350, 400 мм для панельных и 300, 400, 500 мм для крупноблочных зданий.

Расчетную толщину каменных стен согласуют с размерами кирпича или камня и принимают равной ближайшей большей конструктивной толщине, получаемой при кладке. При размерах кирпича 250×120×65 или 250×120×88 мм (модульный кирпич) толщина стен сплошной кладки в 1; 1,5; 2; 2,5 и 3 кирпича (с учетом вертикальных швов по 10 мм между отдельными камнями) составляет 250, 380, 510, 640, и 770 мм.

Конструктивная толщина стены из пиленого камня или легко бетонных мелких блоков, унифицированные размеры которых составляют 390×190×188 мм, при кладке в один камень равна 390 и в 1,5 – 490 мм.

Конструирование стен основано на всестороннем использовании свойств применяемых материалов и решает задачи создания необходимого уровня прочности, устойчивости, долговечности, изоляционных и архитектурно-декоративных качеств.

В соответствии с современными требованиями экономного расходования материалов при проектировании малоэтажных жилых зданий с каменными стенами стараются использовать максимальное количество местных строительных материалов. Например, в районах, удаленных от транспортных магистралей, для возведения стен используют мелкие камни местного производства или монолитный бетон в сочетании с местными утеплителями и на местных заполнителях, для которых требуется только привозной цемент. В поселках же, располагаемых вблизи индустриальных центров, проектируют дома со стенами из крупных блоков или панелей, изготовляемых на предприятиях этого региона. В настоящее время все более широкое применение каменные материалы получают при строительстве домов на садово-огородных участках.

При проектировании малоэтажных домов обычно используют две схемы конструктивного решения наружных стен – сплошные стены из однородного материала и облегченные многослойные стены из материалов различной плотности. Для возведения внутренних стен используют только сплошную кладку. При проектировании наружных стен по схеме сплошной кладки предпочтение отдают менее плотным материалам. Такой прием позволяет достигнуть минимальной толщины стен по теплопроводности и более полно использовать несущую способность материала. Строительные материалы большой плотности выгодно использовать в сочетании с материалами малой плотности (облегченные стены). Принцип устройства облегченных стен основан на том, что несущие функции выполняет слой (слои) из материалов большой плотности (γ > 1600 кг/м 3), а теплоизолятором служит материал малой плотности. Например, вместо сплошной наружной стены из глиняного кирпича толщиной 64 см можно использовать облегченную конструкцию стены из слоя того же кирпича толщиной 24 см, с утеплителем из фибролита толщиной 10 см. Такая замена приводит к снижению массы стены в 2,3 раза.

Для изготовления стен малоэтажных домов используют искусственные и естественные мелкие камни. В настоящее время в строительстве используют искусственные обжиговые камни (кирпич глиняный полнотелый, пустотелый, пористый и керамические блоки); безобжиговые камни (силикатный кирпич, пустотелые блоки из тяжелого бетона и блоки сплошные из легкого бетона); естественные мелкие камни – рваный бут, пиленые камни (туф, пемза, известняк, песчаник, ракушечник и др.).

Размер и вес камней проектируют в соответствии с технологией ручной кладки и с учетом максимальной механизации работ. Стены выкладывают из камней с заполнением зазора между ними раствором. Чаще используют цементно-песчаные растворы. Для кладки внутренних стен используют обычный песок, а для наружных стен песок малой плотности (перлитовый и др.). Кладку стен ведут с обязательным соблюдением перевязки швов (4.6) по рядам.

Как уже было отмечено, ширина кладки стены всегда кратна числу половинок кирпича. Ряды, выходящие на фасадную поверхность кладки, называют лицевой верстой , а обращенные на внутреннюю сторону – внутренней верстой . Ряды кладки между внутренней и лицевой верстой называют забуткой . Кирпичи, уложенные длинной стороной вдоль стены, образуют ложковый ряд , а уложенные поперек стены – тычковый ряд . Система кладки (4.7) образуется определенным расположением камней в стене.

Рядность кладки определяется числом ложковых и тычковых рядов. При равномерном чередовании ложковых и тычковых рядов получается двухрядная (цепная) система кладки (рис.4.5б). Менее трудоемкая многорядная система кладки, при которой один тычковый ряд кирпичей перевязывает пять ложковых рядов (рис.4.5а). В стенах из мелких блоков, возводимых по многорядной системе, один тычковый ряд перевязывает два ложковых ряда кладки (рис.4.5в).

Рис.4.5. Виды ручной кладки стен: а) – многорядная кирпичная кладка; б) – цепная кирпичная кладка; в) – многорядная каменная кладка; г) – цепная каменная кладка

Сплошную кладку из камней большой плотности используют только для возведения внутренних стен и столбов и наружных стен неотапливаемых помещений (рис.4.6а-ж). В некоторых случаях эту кладку используют для возведения наружных стен по многорядной системе (рис.4.6а-в, д). Двухрядную систему кладки камней используют только в необходимых случаях. Например, в керамических камнях щели пустот рекомендуется располагать поперек теплового потока с целью снижения теплопроводности стены. Это достигается при цепной системе кладки.

Облегченные наружные стены проектируют двух типов – с утеплителем между двух стенок сплошной кладки или с воздушной прослойкой (рис.4.6и-м) и с облицовкой утеплителем стены сплошной кладки (рис.4.6н, о). В первом случае различают три основных конструктивных варианта стен – стены с горизонтальными выпусками анкерных камней, стены с вертикальными диафрагмами из камней (колодцевая кладка) и стены с горизонтальными диафрагмами. Первый вариант используется только в случаях применения в качестве утеплителя легкого бетона, который замоноличивает анкерные камни. Второй вариант приемлем для утеплителя в виде заливки легкого бетона и укладки термовкладышей (рис.4.6к). Третий вариант используют при утеплителях из сыпучих материалов (рис.4.6л) или из легко бетонных камней. Сплошная кладка стен с воздушной прослойкой (рис.4.6м) также относится к категории облегченных стен, так как замкнутая воздушная прослойка выполняет функции слоя утеплителя. Толщину прослоек целесообразно принимать равной 2 см. Увеличение прослойки практически не дает увеличения термического ее сопротивления, а уменьшение резко снижает эффективность такой теплоизоляции. Чаще воздушную прослойку используют в сочетании с плитами утеплителя (рис.4.6к, о).

Рис.4,6, Варианты ручной кладки стен малоэтажных жилых зданий: а), б) – сплошные наружные стены из кирпича; в) – сплошная внутренняя кирпичная стена; д), ж) – сплошные наружные стены из камней; г), е) – сплошные внутренние стены из камней; и)-м) – облегченные стены с внутренним утеплением; н), о) – облегченные стены с наружным утеплением; 1 – кирпич; 2 – штукатурка или облицовка листами; 3 – камень искусственный; 4 – утеплитель плитный; 5 – воздушная прослойка; 6 – пароизоляция; 7 – деревянная антисептированная рейка; 8 – засыпка; 9 – растворная диафрагма; 10 – легкий бетон; 11 – камень естественный морозостойкий

Для утепления каменных стен со стороны улицы применяют жесткий плитный утеплитель из легких бетонов, пеностекла, фибролита в сочетании с атмосферостойкой и прочной облицовкой (листы асбестоцемента, доски и др.). Вариант утепления стен снаружи эффективен только при отсутствии доступа холодного воздуха в зону контакта несущего слоя со слоем утепления. Для утепления наружных стен со стороны помещения используют полужесткий плитный утеплитель (камышит, соломит, минераловата и др.), располагающийся вплотную к поверхности первых или с образованием воздушной прослойки, толщиной 16 - 25 мм – «на относе». Плиты «на относе» крепят к стене металлическими зигзагообразными скобами или прибивают к деревянным антисептированным рейкам. Открытую поверхность слоя утепления закрывают листами сухой штукатурки. Между ними и слоем утепления обязательно располагают слой пароизоляции из пергамина, полиэтиленовой пленки, металлической фольги и др.

Изучите и проанализируйте вышеизложенный материал и ответьте на предложенный вопрос.

Вопрос 4.2. Могут ли ряды кирпичей, уложенные длинной стороной вдоль стены, называться тычковыми рядами?

4.2. ответ: да

Конструкции наружных стен гражданских и промышленных зданий

Конструкции наружных стен гражданских и промышленных зданий классифицируются по следующим признакам:

1) по статической функции:

а) несущие;

б) самонесущие;

в) ненесущие (навесные).

На рис. 3.19 показан общий вид данных видов наружных стен.

Несущие наружные стены воспринимают и передают на фундаменты собственный вес и нагрузки от смежных конструкций здания: перекрытий, перегородок, крыш и др. (одновременно выполняют несущую и ограждающую функции).

Самонесущие наружные стены воспринимают вертикальную нагрузку только от собственного веса (включая нагрузку от балконов, эркеров, парапетов и др. элементов стены) и передают их на фундаменты через промежуточные несущие конструкции – фундаментные балки, ростверки или цокольные панели (одновременно выполняют несущую и ограждающую функции).

Ненесущие (навесные) наружные стены поэтажно (или через несколько этажей) опираются на смежные несущие конструкции здания – перекрытия, каркас или стены. Таким образом, навесные стены выполняют только ограждающую функцию.

Рис. 3.19. Виды наружных стен по статической функции:
а – несущие; б – самонесущие; в – ненесущие (навесные): 1 – перекрытие здания; 2 – колонна каркаса; 3 – фундамент

Несущие и ненесущие наружные стены применяются в зданиях любой этажности. Самонесущие стены опираются на собственный фундамент, поэтому их высота ограничивается из-за возможности взаимных деформаций наружных стен и внутренних конструкций здания. Чем выше здание, тем больше разница в вертикальных деформациях, поэтому, например, в панельных домах допускается применение самонесущих стен при высоте здания не более 5 этажей.

Устойчивость самонесущих наружных стен обеспечивается гибкими связями с внутренними конструкциями здания.

2) По материалу:

а) каменные стены возводятся из кирпича (глиняного или силикатного) или камней (бетонных или природных) и применяются в зданиях любой этажности. Каменные блоки выполняют из естественного камня (известняк, туф и др.) или искусственного (бетон, легкий бетон).

б) Бетонные стены выполняют из тяжелого бетона класса В15 и выше плотностью 1600 ÷ 2000 кг/м 3 (несущие части стен) или легкого бетона классов В5 ÷ В15 плотностью 1200 ÷ 1600 кг/м 3 (для теплоизоляционных частей стен).

Для изготовления легких бетонов используются искусственные пористые заполнители (керамзит, перлит, шунгизит, аглопорит и т. п.) или естественные легкие заполнители (щебень из пемзы, шлака, туфа).

При возведении ненесущих наружных стен также используется ячеистый бетон (пенобетон, газобетон и т. п.) классов В2 ÷ В5 плотностью 600 ÷ 1600 кг/м 3 . Бетонные стены применяются в зданиях любой этажности.

в) Деревянные стены применяются в малоэтажных зданиях. Для их возведения используются сосновые бревна диаметром 180 ÷ 240 мм или брусья сечением 150х150 мм или 180х180 мм, а также дощатые или клеефанерные щиты и панели толщиной 150 ÷ 200 мм.

г) стены из небетонных материалов в основном применяются при возведении промышленных зданий или малоэтажных гражданских зданий. Конструктивно они состоят из наружной и внутренней обшивки из листового материала (сталь, алюминиевые сплавы, пластик, асбестоцемент и др.) и утеплителя (сэндвич-панели). Стены данного типа проектируют несущими только для одноэтажных зданий, а при большей этажности – только как ненесущие.

3) по конструктивному решению:

а) однослойные;

б) двухслойные;

в) трехслойные.

Количество слоев наружных стен здания определяется по результатам теплотехнического расчета. Для соответствия современным нормам по сопротивлению теплопередаче в большинстве регионов России необходимо проектировать трехслойные конструкции наружных стен с эффективным утеплителем.

4) по технологии возведения:

а) по традиционной технологии возводятся каменные стены ручной кладки. При этом кирпичи или камни укладываются рядами по слою цементно-песчаного раствора. Прочность каменных стен обеспечивается прочностью камня и раствора, а также взаимной перевязкой вертикальных швов. Для дополнительного повышения несущей способности каменной кладки (например, для узких простенков) применяется горизонтальное армирование сварными сетками через 2 ÷ 5 рядов.

Требуемую толщину каменных стен определяют по теплотехническому расчету и увязывают со стандартными размерами кирпичей или камней. Применяются кирпичные стены толщиной в 1; 1,5; 2; 2,5 и 3 кирпича (250, 380, 510, 640 и 770 мм соответственно). Стены из бетонных или природных камней при кладке в 1 и 1,5 камня имеют толщину 390 и 490 мм соответственно.

На рис. 3.20 показано несколько типов сплошных кладок из кирпича и каменных блоков. На рис. 3.21 показана конструкция трехслойной кирпичной стены толщиной 510 мм (для климатического района Нижегородской области).

Рис. 3.20. Типы сплошных каменных кладок: а – шестирядная кирпичная кладка; б – двух-рядная кирпичная кладка; в – кладка из керамических камней; г и д – кладки из бетонных или природных камней; е – кладка из камней ячеистого бетона с наружной облицовкой кирпичом

На внутренний слой трехслойной каменной стены опираются перекрытия и несущие конструкции крыши. Наружный и внутренний слои кирпичной кладки соединяются между собой арматурными сетками с шагом по вертикали не более 600 мм. Толщина внутреннего слоя принимается 250 мм для зданий высотой 1 ÷ 4 этажа, 380 мм – для зданий высотой 5 ÷ 14 этажей и 510 мм – для зданий высотой более 14 этажей.

Рис. 3.21. Каменная стена трехслойной конструкции:

1 – внутренний несущий слой;

2 – слой теплоизоляции;

3 – воз-душный зазор;

4 – наружный самонесущий (облицовочный) слой

б) полносборная технология используется при возведении крупнопанельных и объемно-блочных зданий. При этом монтаж отдельных элементов здания производится подъемными кранами.

Наружные стены крупнопанельных зданий выполняются из бетонных или кирпичных панелей. Толщина панелей – 300, 350, 400 мм. На рис. 3.22 показаны основные виды бетонных панелей, применяемых в гражданском строительстве.

Рис. 3.22. Бетонные панели наружных стен: а – однослойная; б – двухслойная; в – трехслойная:

1 – конструктивно-теплоизоляционный слой;

2 – защитно-отделочный слой;

3 – несущий слой;

4 – теплоизоляционный слой

Объемно-блочные здания – это здания повышенной заводской готовности, которые монтируются из отдельных блоков-комнат заводского изготовления. Наружные стены таких объемных блоков могут быть одно-, двух- и трехслойными.

в) монолитная и сборно-монолитная технологии возведения позволяют возводить одно-, двух- и трехслойные монолитные стены из бетона.

Рис. 3.23. Сборно-монолитные наружные стены (в плане):
а – двухслойная с наружным слоем теплоизоляции;

б – то же, с внутренним слоем теплоизоляции;

в – трехслойная с наружным слоем теплоизоляции

При использовании данной технологии сначала устанавливается опалубка (форма), в которую заливается бетонная смесь. Однослойные стены выполняются из легких бетонов толщиной 300 ÷ 500 мм.

Многослойные стены выполняются сборно-монолитными с использованием наружного или внутреннего слоя каменных блоков из ячеистого бетона. (см. рис. 3.23).

5) по расположению оконных проемов:

На рис. 3.24 показаны различные варианты расположения оконных проемов в наружных стенах зданий. Варианты а , б , в , г используются при проектировании жилых и общественных зданий, вариант д – при проектировании промышленных и общественных зданий, вариант е – для общественных зданий.

Из рассмотрения данных вариантов можно видеть, что функциональное назначение здания (жилое, общественное или промышленное) определяет конструктивное решение его наружных стен и внешний вид в целом.

Одно из основных требований, предъявляемое к наружным стенам – это необходимая огнестойкость. По требованиям противопожарных норм несущие наружные стены должны быть выполнены из несгораемых материалов с пределом огнестойкости не менее 2 часов (камень, бетон). Применение трудносгораемых несущих стен (например, деревянных оштукатуренных) с пределом огнестойкости не менее 0,5 часа допускается только в одно-, двухэтажных домах.


Рис. 3.24. Расположение оконных проемов в наружных стенах зданий:
а – стена без проемов;

б – стена с небольшим количеством проемов;

в – панельная стена с проемами;

г – несущая стена с усиленными простенками;

д – стена с навесными панелями;
е – полностью остекленная стена (витраж)

Высокие требования к огнестойкости несущих стен вызваны их основной ролью в сохранности здания, так как разрушение несущих стен при пожаре вызывает обрушение всех опирающихся на них конструкций и здания в целом.

Ненесущие наружные стены проектируют несгораемыми или трудносгораемыми с меньшими пределами огнестойкости (от 0,25 до 0,5 часа), так как разрушение данных конструкций при пожаре может вызвать только локальные повреждения здания.

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...